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Abstract 

The Expectation-Maximization (EM) algorithm is an iterative pro­
cedure for maximum likelihood parameter estimation from data 
sets with missing or hidden variables [2]. It has been applied to 
system identification in linear stochastic state-space models, where 
the state variables are hidden from the observer and both the state 
and the parameters of the model have to be estimated simulta­
neously [9]. We present a generalization of the EM algorithm for 
parameter estimation in nonlinear dynamical systems. The "expec­
tation" step makes use of Extended Kalman Smoothing to estimate 
the state, while the "maximization" step re-estimates the parame­
ters using these uncertain state estimates. In general, the nonlinear 
maximization step is difficult because it requires integrating out the 
uncertainty in the states. However, if Gaussian radial basis func­
tion (RBF) approximators are used to model the nonlinearities, 
the integrals become tractable and the maximization step can be 
solved via systems of linear equations. 

1 Stochastic Nonlinear Dynamical Systems 

We examine inference and learning in discrete-time dynamical systems with hidden 
state Xt, inputs Ut, and outputs Yt. 1 The state evolves according to stationary 
nonlinear dynamics driven by the inputs and by additive noise 

(1) 

1 All lowercase characters (except indices) denote vectors. Matrices are represented by 
uppercase characters. 
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where w is zero-mean Gaussian noise with covariance Q. 2 The outputs are non­
linearly related to the states and inputs by 

Yt = g(Xt, Ut) + v (2) 

where v is zero-mean Gaussian noise with covariance R. The vector-valued non lin­
earities f and 9 are assumed to be differentiable, but otherwise arbitrary. 

Models of this kind have been examined for decades in various communities. Most 
notably, nonlinear state-space models form one of the cornerstones of modern sys­
tems and control engineering. In this paper, we examine these models within the 
framework of probabilistic graphical models and derive a novel learning algorithm 
for them based on EM. With one exception,3 this is to the best of our knowledge 
the first paper addressing learning of stochastic nonlinear dynamical systems of the 
kind we have described within the framework of the EM algorithm. 

The classical approach to system identification treats the parameters as hidden vari­
ables, and applies the Extended Kalman Filtering algorithm (described in section 2) 
to the nonlinear system with the state vector augmented by the parameters [5]. 4 

This approach is inherently on-line, which may be important in certain applications. 
Furthermore, it provides an estimate of the covariance of the parameters at each 
time step. In contrast, the EM algorithm we present is a batch algorithm and does 
not attempt to estimate the covariance of the parameters. 

There are three important advantages the EM algorithm has over the classical ap­
proach. First, the EM algorithm provides a straightforward and principled method 
for handing missing inputs or outputs. Second, EM generalizes readily to more 
complex models with combinations of discrete and real-valued hidden variables. 
For example, one can formulate EM for a mixture of nonlinear dynamical systems. 
Third, whereas it is often very difficult to prove or analyze stability within the 
classical on-line approach, the EM algorithm is always attempting to maximize the 
likelihood, which acts as a Lyapunov function for stable learning. 

In the next sections we will describe the basic components of the learning algorithm. 
For the expectation step of the algorithm, we infer the conditional distribution of the 
hidden states using Extended Kalman Smoothing (section 2). For the maximization 
step we first discuss the general case (section 3) and then describe the particular 
case where the nonlinearities are represented using Gaussian radial basis function 
(RBF; [6]) networks (section 4). 

2 Extended Kalman Smoothing 

Given a system described by equations (1) and (2), we need to infer the hidden 
states from a history of observed inputs and outputs. The quantity at the heart 
of this inference problem is the conditional density P(XtIUl,"" UT, Yl,.' " YT), for 
1 ::; t ::; T, which captures the fact that the system is stochastic and therefore our 
inferences about x will be uncertain. 

2The Gaussian noise assumption is less restrictive for nonlinear systems than for linear 
systems since the nonlinearity can be used to generate non-Gaussian state noise. 

3The authors have just become aware that Briegel and Tresp (this volume) have applied 
EM to essentially the same model. Briegel and Tresp's method uses multilayer perceptrons 
(MLP) to approximate the nonlinearities, and requires sampling from the hidden states to 
fit the MLP. We use Gaussian radial basis functions (RBFs) to model the nonlinearities, 
which can be fit analytically without sampling (see section 4) . 

41t is important not to confuse this use of the Extended Kalman algorithm, to simul­
taneously estimate parameters and hidden states, with our use of EKS, to estimate just 
the hidden state as part of the E step of EM. 



Learning Nonlinear Dynamics Using EM 433 

For linear dynamical systems with Gaussian state evolution and observation noises, 
this conditional density is Gaussian and the recursive algorithm for computing its 
mean and covariance is known as Kalman smoothing [4, 8]. Kalman smoothing is 
directly analogous to the forward-backward algorithm for computing the conditional 
hidden state distribution in a hidden Markov model, and is also a special case of 
the belief propagation algorithm.5 

For nonlinear systems this conditional density is in general non-Gaussian and can 
in fact be quite complex. Multiple approaches exist for inferring the hidden state 
distribution of such nonlinear systems, including sampling methods [7] and varia­
tional approximations [3]. We focus instead in this paper on a classic approach from 
engineering, Extended Kalman Smoothing (EKS). 

Extended Kalman Smoothing simply applies Kalman smoothing to a local lineariza­
tion of the nonlinear system. At every point x in x-space, the derivatives of the 

vector-valued functions f and 9 define the matrices, Ax == M I x=x and ex == ~ I x=x' 
respectively. The dynamics are linearized about Xt, the mean of the Kalman filter 
state estimate at time t: 

(3) 

The output equation (2) can be similarly linearized. If the prior distribution of the 
hidden state at t = 1 was Gaussian, then, in this linearized system, the conditional 
distribution of the hidden state at any time t given the history of inputs and outputs 
will also be Gaussian. Thus, Kalman smoothing can be used on the linearized system 
to infer this conditional distribution (see figure 1, left panel). 

3 Learning 

The M step of the EM algorithm re-estimates the parameters given the observed 
inputs, outputs, and the conditional distributions over the hidden states. For the 
model we have described, the parameters define the nonlinearities f and g, and the 
noise covariances Q and R. 

Two complications arise in the M step. First, it may not be computationally fea­
sible to fully re-estimate f and g. For example, if they are represented by neural 
network regressors, a single full M step would be a lengthy training procedure using 
backpropagation, conjugate gradients, or some other optimization method. Alter­
natively, one could use partial M steps, for example, each consisting of one or a few 
gradient steps. 

The second complication is that f and 9 have to be trained using the uncertain state 
estimates output by the EKS algorithm. Consider fitting f, which takes as inputs 
Xt and Ut and outputs Xt+l. For each t, the conditional density estimated by EKS is 
a full-covariance Gaussian in (Xt, xHd-space. So f has to be fit not to a set of data 
points but instead to a mixture of full-covariance Gaussians in input-output space 
(Gaussian "clouds" of data). Integrating over this type of noise is non-trivial for 
almost any form of f. One simple but inefficient approach to bypass this problem 
is to draw a large sample from these Gaussian clouds of uncertain data and then fit 
f to these samples in the usual way. A similar situation occurs with g. 

In the next section we show how, by choosing Gaussian radial basis functions to 
model f and g, both of these complications vanish. 

5The forward part of the Kalman smoother is the Kalman filter. 
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4 Fitting Radial Basis Functions to Gaussian Clouds 

We will present a general formulation of an RBF network from which it should be 
clear how to fit special forms for f and 9. Consider the following nonlinear mapping 
from input vectors x and u to an output vector z: 

[ 

z = L hi Pi (x) + Ax + Bu + b + w, (4) 
i=1 

where w is a zero-mean Gaussian noise variable with covariance Q. For example, 
one form of f can be represented using (4) with the substitutions x f- Xt, u f- Ut, 
and z f- Xt+!; another with x f- (Xt, ud, u f- 0, and Z f- Xt+ 1. The parameters 
are: the coefficients of the I RBFs, hi; the matrices A and B multiplying inputs 
x and u, respectively; and an output bias vector b. Each RBF is assumed to be a 
Gaussian in x-space, with center Ci and width given by the covariance matrix Si: 

(5) 

The goal is to fit this model to data (u,x,z). The complication is that the data 
set comes in the form of a mixture of Gaussian distributions. Here we show how to 
analytically integrate over this mixture distribution to fit the RBF model. 

Assume the data set is: 

1 
P(x,z,u) = J LNj(x,z) 8(u - Uj). 

j 

(6) 

That is, we observe samples from the u variables, each paired with a Gaussian 
"cloud" of data, Nj, over (x, z). The Gaussian Nj has mean /1j and covariance 
matrix Cj . 

Let zo(x, u) = 2:;=1 hi Pi(X) + Ax + Bu + b, where () is the set of parameters 
() = {hI ... h [ , A, B, b}. The log likelihood of a single data point under the model 
is: 

-~ [z - zo(x, u)r Q-l [z - zo(x, u)]- ~ In IQI + const. 

The maximum likelihood RBF fit to the mixture of Gaussian data is obtained by 
minimizing the following integrated quadratic form: 

min{L r r Nj(X,Z)[Z-ZO(X,Uj)rQ_l[Z-ZO(X,Uj)]dXdz+JlnIQI}. (7) 
O,Q .}x }z 

J 

We rewrite this in a slightly different notation, using angled brackets (.) j to denote 
expectation over Nj , and defining 

() [h~ h; ... hI AT BT bTr 
cJ> [PI (x) P2 ( x) ... P [ ( x) x u 1] . 

Then, the objective can be written 

min {'" (( z - () cJ> r Q -1 (z - () cJ») . + J In I Q I} . 
O,Q ~ J 

J 

(8) 
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Taking derivatives with respect to 0, premultiplying by _Q-1, and setting to zero 
gives the linear equations I:j((z - O~)~T)j = 0, which we can solve for 0 and Q: 

In other words, given the expectations in the angled brackets, the optimal parame­
ters can be solved for via a set of linear equations. In appendix A we show that these 
expectations can be computed analytically. The derivation is somewhat laborious, 
but the intuition is very simple: the Gaussian RBFs multiply with the Gaussian 
densities Nj to form new unnormalized Gaussians in (x, y)-space. Expectations un­
der these new Gaussians are easy to compute. This fitting algorithm is illustrated 
in the right panel of figure 1. 
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Figure 1: Illustrations of the E and M steps of the algorithm. The left panel shows 
the information used in Extended Kalman Smoothing (EKS), which infers the hidden 
state distribution during the E-step. The right panel illustrates the regression technique 
employed during the M-step. A fit to a mixture of Gaussian densities is required; if 
Gaussian RBF networks are used then this fit can be solved analytically. The dashed line 
shows a regular RBF fit to the centres of the four Gaussian densities while the solid line 
shows the analytic RBF fit using the covariance information_ The dotted lines below show 
the support of the RBF kernels. 

5 Results 

We tested how well our algorithm could learn the dynamics of a nonlinear system 
by observing only its inputs and outputs. The system consisted of a single input, 
state and output variable at each time, where the relation of the state from one time 
step to the next was given by a tanh nonlinearity. Sample outputs of this system 
in response to white noise are shown in figure 2 (left panel). 

We initialized the nonlinear model with a linear dynamical model trained with 
EM, which in turn we initialized with a variant of factor analysis. The model 
was given 11 RBFs in Xt-space, which were uniformly spaced within a range which 
was automatically determined from the density of points in Xt-space. After the 
initialization was over, the algorithm discovered the sigmoid nonlinearity in the 
dynamics within less than 10 iterations of EM (figure 2, middle and right panels). 

Further experiments need to be done to determine how practical this method will 
be in real domains. 
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Figure 2: (left): Data set used for training (first half) and testing (rest), which consists 
of a time series of inputs, Ut (a) , and outputs Yt (b) . (middle): Representative plots of 
log likelihood vs iterations of EM for linear dynamical systems (dashed line) and nonlinear 
dynamical systems trained as described in this paper (solid line) . Note that the actual 
likelihood for nonlinear dynamical systems cannot generally be computed analytically; 
what is shown here is the approximate likelihood computed by EKS. The kink in the solid 
curve comes when initialization with linear dynamics ends and the nonlinearity starts to 
be learned. (right): Means of (Xt , Xt+d Gaussian posteriors computed by EKS (dots) , 
along with the sigmoid nonlinearity (dashed line) and the RBF nonlinearity learned by 
the algorithm. At no point does the algorithm actually observe (Xt , Xt+d pairs; these are 
inferred from inputs, outputs, and the current model parameters. 

6 Discussion 

This paper brings together two classic algorithms, one from statistics and another 
from systems engineering, to address the learning of stochastic nonlinear dynam­
ical systems. We have shown that by pairing the Extended Kalman Smoothing 
algorithm for state estimation in the E-step, with a radial basis function learning 
model that permits analytic solution of the M-step, the EM algorithm is capable of 
learning a nonlinear dynamical model from data. As a side effect we have derived 
an algorithm for training a radial basis function network to fit data in the form of 
a mixture of Gaussians. 

Our initial approach has three potential limitations. First, the M-step presented 
does not modify the centres or widths of the RBF kernels. It is possible to compute 
the expectations required to change the centres and widths, but it requires resort­
ing to a partial M-step. For low dimensional state spaces , filling the space with 
pre-fixed kernels is feasible, but this strategy needs exponentially many RBFs in 
high dimensions . Second, EM training can be slow, especially if initialized poorly. 
Understanding how different hidden variable models are related can help devise 
sensible initialization heuristics. For example, for this model we used a nested ini­
tialization which first learned a simple linear dynamical system, which in turn was 
initialized with a variant of factor analysis. Third, the method presented here learns 
from batches of data and assumes stationary dynamics. We have recently extended 
it to handle online learning of nonstationary dynamics . 

The belief network literature has recently been dominated by two methods for 
approximate inference, Markov chain Monte Carlo [7] and variational approxima­
tions [3]. To our knowledge this paper is the first instance where extended Kalman 
smoothing has been used to perform approximate inference in the E step of EM. 
While EKS does not have the theoretical guarantees of variational methods, its sim­
plicity has gained it wide acceptance in the estimation and control literatures as a 
method for doing inference in nonlinear dynamical systems. We are now exploring 
generalizations of this method to learning nonlinear multilayer belief networks. 
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A Expectations Required to Fit the RBFs 

The expectations we need to compute for equation 9 are (x)j, (z)j, (xx T)j, (xz T)j, (zz T)j, 
(Pi(X))j, (x pi(X))j, (z Pi(X))j, (pi(X) Pl(X))). 

Starting with some of the easier ones that do not depend on the RBF, kernel p: 

(x)j = JLj (z)j = JL} 
(XXT)j = JLjJLj,T +Cr (xzT)j = JLjJLj,T +Cr 
(ZZT)j = JLjJLj,T +Cjz 

Observe that when we multiply the Gaussian RBF kernel pi(X) (equation 5) and N j we 
get a Gaussian density over (x, z) with mean and covariance 

( 
-1 [ S-:-l Ci ]) JLij = Cij Cj JLj + ' 0 

and an extra constant (due to lack of normalization), 

{3ij = (21T)-d",/2IS;j-1/2ICjl-I/2ICijll/2 exp{ -~ij/2} 

where ~ij = c~ Si- I Ci + JLl Cj- 1 JLj - JL0 Ci-/ JLij . Using {3ij and JLij, we can evaluate the 
other expectatIOns: 

(pi(X))j = {3ij, (x pi(X))j = {3ijJLfj , and (z pi(X))j = {3ijJL'ij . 

Finally, (pi(X) Pl(X))j = (21T)-d", ICj 1-1/2IS;j-1/2IS11-1/2ICilj 11/ 2 exp{ -,ifj/2}, where 

C,'l)" = (C):-l + [ Si- 1 +0 Sll 0]) -1 d C (C- 1 [ Si-1Ci + Sll Cl ]) o an JLilj = ilj ) JLj + 0 ' 

d TS-1 TS-l TC- l T C- 1 an ,iij = Ci i ci + Cl l Cl + JLj j JLj - JLilj ilj JLiij . 
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