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Abstract

Symmetrically connected recurrent networks have recently been
used as models of a host of neural computations. However, be-
cause of the separation between excitation and inhibition, biolog-
ical neural networks are asymmetrical. We study characteristic
differences between asymmetrical networks and their symmetri-
cal counterparts, showing that they have dramatically different
dynamical behavior and also how the differences can be exploited
for computational ends. We illustrate our results in the case of a
network that is a selective amplifier.

1 Introduction

A large class of non-linear recurrent networks, including those studied by
Grossberg,® the Hopfield net,!®!! and many more recent proposals for the
head direction system,?” orientation tuning in primary visual cortex,?>1:3.1% eye
position,?® and spatial location in the hippocampus!® make a key simplifying
assumption that the connections between the neurons are symmetric. Analysis
is relativelqz straightforward in this case, since there is a Lyapunov (or energy)
function®!! that often guarantees the convergence of the motion trajectory to an
equilibrium point. However, the assumption of symmetry is broadly false. Net-
works in the brain are almost never symmetrical, if for no other reason than the
separation between excitation and inhibition. In fact, the question of whether ig-
noring the polarity of the cells is simplification or over-simplication has yet to be
fully answered.

Networks with excitatory and inhibitory cells (EI systems, for short) have
long been studied,® for instance from the perspective of pattern generation in
invertebrates,?® and oscillations in the thalamus™?* and the olfactory system.!" 3
Further, since the discovery of 40 Hz oscillations or synchronization amongst cells
in primary visual cortex of anesthetised cat,®® oscillatory models of V1 involving
separate excitatory and inhibitory cells have also been popular, mainly from the
perspective of how the oscillations can be created and sustained and how they can
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be used for feature linking or binding.?%2%12 However the scope for computing
with dynamically stable behaviors such as limit cycles is not yet clear.

In this paper, we study the computational differences between a family of EI sys-
tems and their symmetric counterparts (which we call S systems). One inspira-
tion for this work is Li’s nonlinear EI system modeling how the primary visual
cortex performs contour enhancement and pre-attentive region segmentation.!*15
Studies by Braun® had suggested that an S system model of the cortex can not
perform contour enhancement unless additional (and biologically questionable)
mechanisms are used. This posed a question about the true differences between
El and S systems that we answer. We show that EI systems can take advantage of
dynamically stable modes that are not available to S systems. The computational
significance of this result is discussed and demonstrated in the context of models
of orientation selectivity. More details of this work, especially its significance for
models of the primary visual cortical system, can be found in Li & Dayan (1999).16

2 Theory and Experiment

Consider a simple, but biologically significant, EI system in which excitatory and
inhibitory cells come in pairs and there are no ‘10n§-range' connections from the
inhibitory cells'* !> (to which the Lyapunov theory'*2! does not yet apply):

i = —xi+ ) Jijg(x;) —h@) + L 1y = —yi + 32, Wisg(z;), (1)

where z; are the principal excitatory cells, which receive external or sensory in-
put [;, and generate the network outputs g(z;); y; are the inhibitory interneurons
(which are taken here as having no external input); function g(z) = [z — T]4 is
the threshold non-linear activation function for the excitatory cells; h(y) is the ac-
tivation function for the inhibitory cells (for analytical convenience, we use the
linear form h(y) = (y — T,) although the results are similar with the non-linear
h(y) = [y — Ty]+); 7y is a time-constant for the inhibitory cells; and J;; and W;; are
the output connections of the excitatory cells. Excitatory and inhibitory cells can
also be perturbed by Gaussian noise.

In the limit that the inhibitory cells are made infinitely fast (r, = 0), we have
yi = ) ; Wijg(z;), leaving the excitatory cells to interact directly with each other:

& = —xi+ )5 Jii9(5) — h(; Wijg(z;)) + L 2
= —zi+ 3 (Jiy — Wiy)g(z;) + L + ks €))

where k; are constants. In this network, the neural connections J;; — W;; between
any two cells = can be either excitatory or inhibitory, as in many abstract neural
network models. When J;; = Jj; and W;; = Wj;, the network has symmetric
connections. This paper compares EI systems with such connections and the cor-
responding S systems. Since there are many ways of setting J;; and W;; in the EI
system whilst keeping constant J;; — W;;, which is the effective weight in the S
system, one may intuitively expect the EI system to have a broader computational
range.

The response of either system to given inputs is governed by the location and lin-
ear stability of their fixed points. The S network is so defined as to have fixed
points X (where x = 0 in equation 3) that are the same as those (X, ¥) of the EI
network. In particular, X depends on inputs I (the input-output sensitivity) via
dx = (I1-JD, + WD,) " dI, where [ is the identity matrix, J and W are the
connection matrices, and D, is a diagonal matrix with elements [Dy];; = ¢'(Z:).
However, although the locations of the fixed points are the same for the El and S
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systems, the dynamical behavior of the systems about those fixed points are quite
different, and this is what leads to their differing computational power.

To analyse the stability of the fixed points, consider, for simplicity the case that 7, =
1in the El system, and that the matrices JD, and WD, commute with eigenvalues
A{ and A}Y respectively for k = 1,... , N where N is the dimension of x. The local
deviations near the fixed points along each of the N modes will grow in time if the
real parts of the following values are positive

yEL = 14 (1/2M (2 (\)® = A¥)/2  for the EI system

v o= —1-AV +A] for the S system
In the case that A’ and AW are real, then if the S system is unstable, then the EI
system is also unstable. For if —1+ ] =AY > 0then (A\{)? —4A}Y > (A/ —2)?,and
s029FT = =242+ ((\))? - 4/\W)1"2 > 0. However, if the El system is oscillatory,
42% > (A7)?, then the S system is stable since =1+ A7 =AW < 1427 - (\/)2/4 =
—(1=A7/2)? < 0. Hence the EI system can be unstable and oscillatory while the S
system is stable.

We are interested in the capacity of both systems to be selective amplifiers. This
means that there is a class of inputs I that should be comparatively boosted by
the system; whereas others should be comparatively suppressed. For instance, if
the cells represent the orientation of a bar at a point, then the mode containing a
unimodal, well-tuned, 'bum?’ in orientation space should be enhanced compared
with poorly tuned inputs.?>!:1® However, if the cells represent oriented small
bars at multiple points in visual space, then isolated smooth and strai%ht contours
should be enhanced compared with extended homogeneous textures.'*: 1%

The quality of the systems will be judged according to how much selective ampli-
fication they can stably deliver. The critical trade-off is that the more the selected
mode is amplified, the more likely it is that, when the input is non-specific, the
system will be unstable to fluctuations in the direction of the selected mode, and
therefore will hallucinate spurious answers.

3 The Two Point System

A particularly simple case to consider has just two neurons (for the S system; two
pairs of neurons for the EI system) and weights

J=( 72 J W= %o v
J Jo w Wy

The idea is that each node coarsely models a group of neurons, and the interac-
tions between neurons within a group (j, and w,) are qualitatively different from
interactions between neurons between groups (j and w). The form of selective am-
plification here is that symmetric or ambiguous inputs I = I(1, 1) should be sup-
pressed compared with asymmetric inputs I’ = I(1,0) (and, equivalently, (0, 1)).
In particular, given, I, the system should not spontaneously generate a response
with z, significantly different from z,. Define the fixed points to be z{ =25 > T
under I* and z} > T > z3 under I, where T is the threshold of the excitatory
neurons. These relationships will be true across a wide range of input levels I. The
ratio

dzi/dI 1+ (wo — Jo) 1+ (wo — Jo)
of the average relative responses as the input level I changes is a measure of how
the system selectively amplifies the preferred or consistent inputs against ambigu-
ous ones. This measure is appropriate only when the fluctuations of the system
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Figure 1: Phase portraits for the S system in the 2 point case. A;B) Evolution in response to I* «< (1,1)
and I° o (1,0) for parameters for which the response to I¢ is stably symmetric. C;D) Evolution in
response to I and I® for parameters for which the symmetric response to I¢ is unstable, inducing two
extra equilibrium points. The dotted lines show the thresholds T for g(z).

from the fixed points z* and z° are well behaved. We will show that this require-
ment permits larger values of R in the El system than the S system, suggesting that
the EI system can be a more powerful selective amplifier.

In the S system, the stabilities are governed by S = —(1 + w, — jo,) for the single
mode of deviation z; —z} around fixed point band 73 = —(1 + (wo £ w) — (jo = j))
for the two modes of deviation z4+ = (z, — #{) £ (z2 — £%) around fixed point
a. Since we only consider cases when the input-output relationship dx/dI of the
fixed points is well defined, this means v° < 0 and y§ < 0. However, for some
interaction parameters, there are two extra (uneven) fixed points z{ # z§ for (the
even) input /*. Dynamic systems theory dictates these two uneven fixed points
will be stable and that they will appear when the ‘- mode of the perturbation
around the even fixed point Z{ = z§ is unstable. The system breaks symmetry
in inputs, ie the motion trajectory diverges from the (unstable) even fixed point to
one of the (stable) uneven ones. To avoid such cases, it is necessary that v¥ < 0.
Combining this condition with equation 4 and v < 0 leads to a upper bound on
the amplification ratio RS < 2. Figure 1 shows phase portraits and the equilibrium
points of the S system under input I* and I° for the two different system parameter
regions.

As we have described, the EI system has exactly the same fixed points as the S sys-
tem, but they are more unstable. The stability around the symmetric fixed point
under I° is governed by £/ = —1+4(j,£5)/24+/(Go £ j)2/4 — (w, £ w), while that
of the asymmetric fixed point under I* or I° by &/ = —1+j,/24/j2/4 — w,. Con-
sequently, when there are three fixed points under 1%, all of them can be unstable
in the EI system, and the motion trajectory cannot converge to any of them. In this
case, when both the ‘+" and ‘-’ modes around the symmetric fixed point z{ = z§
are unstable, the global dynamics constrains the motion trajectory to a limit cycle
around the fixed points. If z{ ~ z§ on this limit cycle, then the EI system will
not break symmetry, even though the selective amplification ratio R > 2. Figure 2
demonstrates the performance of the EI system in this regime. Figure 2A;B show
various aspects of the response to input I* which should be comparatively sup-
pressed. The system oscillates in such a way that z; and z; tend to be extremely
similar (including being synchronised). Figure 2C;D show the same aspects of
the response to I°, which should be amplified. Again the network oscillates, and,
although g(z) is not driven completely to 0 (it peaks at 15), it is very strongly
dominated by g(z,), and further, the overall response is much stronger than in
figure 2A;B.

The pertinent difference between the EI and S systems is that while the S system
(when h(y) is linear) can only roll down the energy landscape to a stable fixed
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re 2: Projections of the response of the EI system. A;B) Evolution of response to I°. A) z; vs y
B} 9(z1)— g(mz) (solid); g(x1)+g(zg) (dotted) across time show that the z; =z mode dominates
and the growth of z; — z3 is strongly suppressed. C;D) Evolution of the response to I>. Here, the
response of z, always dominates that of z2 over oscillations. The difference between g(z;)+g(z2) and
g(z1) — g(z2) is too small to be evident on the figure. Note the difference in scales between A;B and
C,D.Here jo = 2.1;5 = 0.4;wp = 1.11;w = 0.9.

point and break the input symmetry, the EI system can resort to global limit cycles
z1(t) ~ z(t) between unstable fixed points and maintain input symmetry. This is
often (robustly over a large range of parameters) the case even when the "~" mode
is locally more unstable (at the symmetric fixed point) than the ‘+" mode, because
the '~ mode is much strongly suppressed when the motion trajectory enters the
subthreshold region z; < T and z2 < T. As we can see in figure 2A;B, this acts
to suppress any overall growth in the '~ mode. Since the asymmetric fixed point
under I’ is just as unstable as that under I?, the EI system responds to asymmetric
input I° also by a stable limit cycle around the asymmetric fixed point.

Since the response of the system in response to either pattern is oscillatory, there are
various reasonable ways of evaluating the relative response ratio. Using the mean
responses of the system during a cycle to define X, the selective amplification ratio
in figure 2is RET = 97, which is significantly higher than the RS = 2 available from
the S system. This is a simple existence proof of the superiority of the EI system for
amplification, albeit at the expense of oscillations. In fact, in this two point case, it
can be shown that any meaningful behavior of the S system (including symmetry
breaking) can be qualitatively replicated in the EI system, but not vice-versa.

4 The Orientation System

Symmetric recurrent networks have recently been investigated in great depth for
representing and calculating a wide variety of quantities, including orientation
tuning. The idea behind the recurrent networks is that they should take noisy (and
perhaps weakly tuned) input and selectively amplify the component that repre-
sents an orientation # in the input, leaving a tuned pattern of excitation across the
population that faithfully represents the underlying input. Based on the analysis
above, we can expect that if an S network amplifies a tuned input enough, then it
will break input symmetry given an untuned input and thus hallucinate a tuned
response. However, an EI system, in the same oscillatory regime as for the two
point system, can maintain untuned and suppressed response to untuned inputs.

We designed a particular EI system with a high selective amplification factor
for tuned inputs 1(9). In this case, units z;,y; have preferred orientations 6;

(¢ — N/2)m/N for i = 1...n. the connection matrices J is Toplitz with Gaussmn
tuning, and, for sunphmty, [W];; does not depend on ¢,j. Figure 3B (and inset)
shows the output of two units in the network in response to a tuned input, show-
ing the nature of the oscillations and the way that selectivity builds up over the
course of each period. Figure 3C shows the activities of all the units at three partic-
ular phases of the oscillation. Figure 3A shows how the mean activity of the most
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Figure 3: The Gaussian orientation network. A) Mean response of the 8; = 0° unit in the network as
a function of a (untuned) or b (tuned) with a log scale. B) Activity of the §; = 0° (solid) and 8; = 30°
(dashed) units in the network over the course of the positive part of an oscillation. Inset - activity of
these units over all time. C) Activity of all the units at the three times shown as (i), (ii) and (iii) in (B)
(i) (dashed) is in the rising phase of the oscillation; (ii) (solid) is at the peak; and (iii) (dotted) is during
the falling phase. Here, the inputis I; = a + be=07/29%, with ¢ = 13°, and the T&plitz weights are

Ji; =@+ 21e~©®i=8;)/2¢"?) /N with o’ = 20° and W;; = 23.5/N.

45 ]

activated unit scales with the levels of tuned and untuned input. The network
amplifies the tuned inputs dramatically more — note the logarithmic scale. The S
system breaks symmetry to the untuned input (b = 0) for these weights. If the
weights are scaled uniformly by a factor of 0.22, then the S system is appropriately
stable. However, the magnification ratio is 4.2 rather than something greater than
1000 in the EI system.

The orientation system can be understood to a large qualitative degree by looking
at its two-point cousins. Many of the essential constraints on the system are de-
termined by the behavior of the system when the mode with z; = z; dominates,
in which case the complex non-linearities induced by orientation tuning or cut off
and its equivalents are irrelevant. Let J(f) and W( f) for (angular) frequency f
be the Fourier transforms of J(i — j) = [J];; and W (i — j) = [W];; and define
A(f) = Re{-1+ J(f)/2 +i/(W(f) — J?(f)/4)}. Then, let f* >0 be the frequency
such that A(f*) > A(f) for all f > 0. This is the non-translation-invariant mode
that is most likely to cause instabilities for translation invariant behavior. A two
point system that closely corresponds to the full system can be found by solving
the simultaneous equations:

Jo+i=JO) we+w=W(0) jo—i=J*) wo—w=W(*)

This design equates the z, =, mode in the two point system with the f=0 mode
in the orientation system and the z; = —z, mode with the f= f* mode. For smooth
J and W, f* is often the smallest or one of the smallest non-zero spatial frequen-
cies. It is easy to see that the two systems are exactly equivalent in the translation
invariant mode z; = z; under translation invariant input /; = I; in both the lin-
ear and nonlinear regimes. The close correspondence between the two systems in
other dynamic regimes is supported by simulation results.!® Quantitatively, how-
ever, the amplification ratio differs between the two systems.

5 Conclusions

We have studied the dynamical behavior of networks with symmetrical and asym-
metrical connections and have shown that the extra degrees of dynamical freedom
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of the latter can be put to good computational use, eg global dynamic stability via
local instability. Many applications of recurrent networks involve selective am-
plification — and the selective amplification factors for asymmetrical networks can
greatly exceed those of symmetrical networks. We showed this in the case of orien-
tation selectivity. However, it was originally inspired by a similar result in contour
enhancement and texture segregation for which the activity of isolated oriented
line elements should be enhanced if they form part of a smooth contour in the
input and suppressed if they form part of an extended homogeneous texture. Fur-
ther, the output should be homogeneous if the input is homogeneous (in the same
way that the orientation network should not hallucinate orientations from untuned
input). In this case, similar analysis'® shows that stable contour enhancement is
limited to just a factor of 3.0 for the S system (but not for the EI system), suggest-
ing an explanation for the poor performance of a slew of S systems in the literature
designed for this purpose. We used a very simple system with just two pairs of
neurons to develop analytical intuitions which are powerful enough to guide our
design of the more complex systems. We expect that the details of our model, with
the exact pairing of excitatory and inhibitory cells and the threshold non-linearity,
are not crucial for the results.

Inhibition in the cortex is, of course, substantially more complicated than we have
suggested. In particular, inhibitory cells do have somewhat faster (though finite)
time constants than excitatory cells, and are also not so subject to short term plas-
ticity effects such as spike rate adaptation. Nevertheless, oscillations of various
sorts can certainly occur, suggesting the relevance of the computational regime
that we have studied.
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