
Combining Classifiers Using
Correspondence Analysis

Christopher J. Merz
Dept. of Information and Computer Science

University of California, Irvine, CA 92697-3425 U.S.A.
cmerz@ics.uci.edu

Category: Algorithms and Architectures.

Abstract

Several effective methods for improving the performance of a sin­
gle learning algorithm have been developed recently. The general
approach is to create a set of learned models by repeatedly apply­
ing the algorithm to different versions of the training data, and
then combine the learned models' predictions according to a pre­
scribed voting scheme. Little work has been done in combining the
predictions of a collection of models generated by many learning
algorithms having different representation and/or search strategies.
This paper describes a method which uses the strategies of stack­
ing and correspondence analysis to model the relationship between
the learning examples and the way in which they are classified by
a collection of learned models. A nearest neighbor method is then
applied within the resulting representation to classify previously
unseen examples. The new algorithm consistently performs as well
or better than other combining techniques on a suite of data sets.

1 Introduction

Combining the predictions of a set of learned models! to improve classification
and regression estimates has been an area of much research in machine learn­
ing and neural networks [Wolpert, 1992, Merz and Pazzani, 1997, Perrone, 1994,
Breiman, 1996, Meir, 1995]. The challenge of this problem is to decide which models
to rely on for prediction and how much weight to give each. The goal of combining
learned models is to obtain a more accurate prediction than can be obtained from
any single source alone.

1 A learned model may be anything from a decision/regression tree to a neural network.

592 C. l Men

Recently, several effective methods have been developed for improving the perfor­
mance of a single learning algorithm by combining multiple learned models gener­
ated using the algorithm. Some examples include bagging [Breiman, 1996], boosting
[Freund, 1995], and error correcting output codes [Kong and Dietterich, 1995]. The
general approach is to use a particular learning algorithm and a model genera­
tion technique to create a set of learned models and then combine their predic­
tions according to a prescribed voting scheme. The models are typically generated
by varying the training data using resampling techniques such as bootstrapping
[Efron and Tibshirani, 1993J or data partitioning [Meir, 1995] . Though these meth­
ods are effective, they are limited to a single learning algorithm by either their
model generation technique or their method of combining.

Little work has been done in combining the predictions of a collection of models
generated by many learning algorithms each having different representation and/or
search strategies. Existing approaches typically place more emphasis on the model
generation phase rather than the combining phase [Opitz and Shavlik, 1996]. As a
result, the combining method is rather limited. The focus of this work is to present
a more elaborate combining scheme, called SCANN, capable of handling any set
of learned models , and evaluate it on some real-world data sets . A more detailed
analytical and empirical study of the SCANN algorithm is presented in [Merz, 1997] .

This paper describes a combining method applicable to model sets that are homoge­
neous or heterogeneous in their representation and/or search techniques. Section 2
describes the problem and explains some of the caveats of solving it. The SCANN
algorithm (Section 3), uses the strategies of stacking [Wolpert, 1992J and correspon­
dence analysis (Greenacre, 1984] to model the relationship between the learning ex­
amples and the way in which they are classified by a collection of learned models . A
nearest neighbor method is then applied to the resulting representation to classify
previously unseen examples.

In an empirical evaluation on a suite of data sets (Section 4), the naive approach of
taking the plurality vote (PV) frequently exceeds the performance of the constituent
learners. SCANN, in turn, matches or exceeds the performance of PV and several
other stacking-based approaches. The analysis reveals that SCANN is not sensitive
to having many poor constituent learned models , and it is not prone to overfit by
reacting to insignificant fluctuations in the predictions of the learned models.

2 Problem Definition and Motivation

The problem of generating a set of learned models is defined as follows. Suppose
two sets of data are given: a learning set C = {(Xi, Yi), i = 1, .. . ,I} and a test set
T = {(Xt, yd, t = 1, .. . , T}. Xi is a vector of input values which are either nominal
or numeric values, and Yi E {Cl , ... , Cc} where C is the number of classes. Now
suppose C is used to build a set of N functions, :F = {fn (x)}, each element of which
approximates f(x) , the underlying function.

The goal here is to combine the predictions of the members of :F so as to find
the best approximation of f(x). Previous work [Perrone, 1994] has indicated that
the ideal conditions for combining occur when the errors of the learned models are
uncorrelated. The approaches taken thus far attempt to generate learned models
which make uncorrelated errors by using the same algorithm and presenting different
samples of the training data [Breiman, 1996, Meir, 1995], or by adjusting the search
heuristic slightly [Opitz and Shavlik, 1996, Ali and Pazzani, 1996J.

No single learning algorithm has the right bias for a broad selection of problems.

Combining Classifiers Using Correspondence Analysis 593

Therefore, another way to achieve diversity in the errors of the learned models
generated is to use completely different learning algorithms which vary in their
method of search and/or representation. The intuition is that the learned models
generated would be more likely to make errors in different ways. Though it is not
a requirement of the combining method described in the next section, the group of
learning algorithms used to generate :F will be heterogeneous in their search and/or
representation methods (i.e., neural networks, decision lists, Bayesian classifiers,
decision trees with and without pruning, etc .). In spite of efforts to diversify the
errors committed, it is still likely that some of the errors will be correlated because
the learning algorithms have the same goal of approximating f, and they may use
similar search strategies and representations. A robust combining method must
take this into consideration.

3 Approach

The approach taken consists of three major components: Stacking, Correspondence
Analysis, and Nearest Neighbor (SCANN) . Sections 3.1-3.3 give a detailed descrip­
tion of each component, and section 3.4 explains how they are integrated to form
the SCANN algorithm.

3.1 Stacking

Once a diverse set of models has been generated, the issue of how to combine them
arises. Wolpert (Wolpert, 1992] provided a general framework for doing so called
stacked genemiization or stacking. The goal of stacking is to combine the members
of:F based on information learned about their particular biases with respect to £2 .

The basic premise of stacking is that this problem can be cast as another induction
problem where the input space is the (approximated) outputs of the learned models,
and the output space is the same as before, i.e.,

The approximated outputs of each learned model, represented as jn(Xi), are gener­
ated using the following in-sample/out-of-sample approach:

1. Divide the £0 data up into V partitions.

2. For each partition, v,

• Train each algorithm on all but partition v to get {j;V}.

• Test each learned model in {j;V} on partition v.
• Pair the predictions on each example in partition v (i.e., the new input

space) with the corresponding output, and append the new examples
to £1

3. Return £1

3.2 Correspondence Analysis

Correspondence Analysis (CA) (Greenacre, 1984] is a method for geometrically ex­
ploring the relationship between the rows and columns of a matrix whose entries
are categorical. The goal here is to explore the relationship between the training

2Henceforth £ will be referred to as £0 for clarity.

594 c. 1. Men

Table 1· Correspondence Analysis calculations.
Stage Symbol Definition Description
1 N (I x J) indicator matrix Records votes of learned models .

2:1 J Grand total of table N. n i=1 2:j=1 nij
r ri = ni+/n Row masses.
c cj=n+j/n Column masses .
P (1/n)N Correspondence matrix.
Dc (J x J) diagonal matrix Masses c on diagonal.
Dr (I X I) diagonal matrix Masses r on diagonal.
A Dr -1/2(p _ rcT)Dc -1/2 Standardized residuals.

2 A urv'! SVD of A.
3 F Dr -1/2ur Principal coordinates of rows.

G Dc -1/2vr Principal coordinates of columns.

examples and how they are classified by the learned models. To do this, the predic­
tion matrix, M, is explored where min = in (xd (1 ::; i ::; I, and 1 ::; n ::; N). It is
also important to see how the predictions for the training examples relate to their
true class labels, so the class labels are appended to form M' , an (I x J) matrix
(where J = N + 1). For proper application of correspondence analysis, M' must be
converted to an (I x (J . C)) indicator matrix, N, where ni,(joJ+e) is a one exactly
when mij = ee, and zero otherwise.

The calculations of CA may be broken down into three stages (see Table 1). Stage
one consists of some preprocessing calculations performed on N which lead to the
standardized residual matrix, A . In the second stage, a singular value decomposition
(SVD) is performed on A to redefine it in terms ofthree matrices: U(lXK), r(KxK) '

and V(KXJ), where K = min(I - 1, J - 1) . These matrices are used in the third
stage to determine F(lXK) and G(JxK) , the coordinates of the rows and columns
of N, respectively, in the new space . It should be noted that not all K dimensions
are necessary. Section 3.4, describes how the final number of dimensions, K *, is
determined.

Intuitively, in the new geometric representation , two rows, fp* and fq*, will lie close
to one another when examples p and q receive similar predictions from the collection
of learned models. Likewise, rows gr* and gu will lie close to to one another when
the learned models corresponding to r and s make similar predictions for the set
of examples. Finally, each column, r, has a learned model, j', and a class label, c',
with which it is associated; fp* will lie closer to gr* when model j' predicts class c'.

3.3 Nearest Neighbor

The nearest neighbor algorithm is used to classify points in a weighted Euclidean
space. In this scenario, each possible class will be assigned coordinates in the space
derived by correspondence analysis. Unclassified examples will be mapped into the
new space (as described below) , and the class label corresponding to the closest
class point is assigned to the example .

Since the actual class assignments for each example reside in the last C columns of
N, their coordinates in the new space can be found by looking in the last Crows
of G. For convenience, these class points will be called Class!, . .. , Classc .

To classify an unseen example, XTest, the predictions of the learned models on XTest

must be converted to a row profile, rT , oflength J . C, where r& oJ+e) is 1/ J exactly

Combining Classifiers Using Correspondence Analysis 595

Table 2: Experimental results.
PV SCANN S-BP S-BAYES Best Ind.

vs PV vs PV vs PV vs PV
Data set error ratio ratio ratio ratio
abalone 80.35 .490 .499 .487 .535111'

bal 13.81 .900 .859 .992 .911BP

breast 4.31 .886 .920 .881 .938BP
credit 13.99 .999 1.012 1.001 1.054BP

dementia 32.78 .989 1.037 .932 1.048c4.5

glass 31.44 1.008 1.158 1.215 1.1550C1

heart 18.17 .964 .998 .972 .962BP
ionosphere 3.05 .691 1.289 1.299 2.175c4 .5
..

4.44 1.017 1.033 1.467 1.150oc1 1flS
krk 6.67 1.030 1.080 1.149 1. 159NN
liver 29.33 1.035 1.077 1.024 1.138cN2

lymphography 17.78 1.017 1.162 1.100 .983Pebl8

musk 13.51 .812 .889 .835 1. 113Peb13

retardation 32.64 .970 .960 .990 .936Baye3

sonar 23.02 .990 1.079 1.007 1.048BP
vote 5.24 .903 .908 .893 .927c4 .5

wave 21.94 1.008 1.109 1.008 1.200Pebl8

wdbc 4.27 1.000 1.103 1.007 1. 164NN

when mij = ee, and zero otherwise. However, since the example is unclassified,
XTe3t is of length (J - 1) and can only be used to fill the first ((J - 1) . C) entries
in iT. For this reason , C different versions are generated, i.e., iT, . .. , i c , where
each one "hypothesizes" that XTe3t belongs to one of the C classes (by putting 1/ J
in t~e appropr~ate col~~) .. Loc~ting thes=l.rofiles in the scale~ sp~ce is a matter
of s1mple matflx multIphcatIOn, 1.e., f'[= re Gr-1. The f'[wh1ch lies closest to a
class point, say Classc') is considered the "correct" hypothesized class, and XTe3t
is assigned the class label c' .

3.4 The SCANN Algorithm

Now that the three main parts of the approach have been described, a summary of
the SCANN algorithm can be given as a function of Co and the constituent learning
algorithms, A. The first step is to use Co and A to generate the stacking data, C1 ,

capturing the approximated predictions of each learned model. Next, C1 is used
to form the indicator matrix, N. A correspondence analysis is performed on N to
derive the scaled space, A = urvT. The number of dimensions retained from
this new representation, K *, is the value which optimizes classification on C 1 . The
resulting scaled space is used to derive the row/column coordinates F and G, thus
geometrically capturing the relationships between the examples, the way in which
they are classified, and their position relative to the true class labels. Finally, the
nearest neighbor strategy exploits the new representation by predicting which class
is most likely according to the predictions made on a novel example.

596 C. J Merz

4 Experimental Results

The constituent learning algorithms, A, spanned a variety of search and/or
representation techniques: Backpropagation (BP) [Rumelhart et al., 1986], CN2
[Clark and Niblett, 1989], C4.5 [Quinlan, 1993], OC1 [Salzberg; and Beigel, 1993],
PEBLS [Cost, 1993], nearest neighbor (NN), and naive Bayes. Depending on the
data set, anywhere from five to eight instantiations of algorithms were applied. The
combining strategies evaluated were PV, SCANN, and two other learners trained
on £1: S-BP, and S-Bayes.

The data sets used were taken from the UCI Machine Learning Database Repository
[Merz and Murphy, 1996], except for the unreleased medical data sets: retardation
and dementia. Thirty runs per data set were conducted using a training/test par­
tition of 70/30 percent. The results are reported in Table 2. The first column gives
the mean error rate over the 30 runs of the baseline combiner, PV. The next three
columns ("SCANN vs PV", "S-BP vs PV", and "S-Bayes vs PV") report the ratio
of the other combining strategies to the error rate of PV. The column labeled "Best
Ind. vs PV" reports the ratio with respect to the model with the best average error
rate. The superscript of each entry in this column denotes the winning algorithm.
A value less than 1 in the "a vs b" columns represents an improvement by method a
over method b. Ratios reported in boldface indicate the difference between method
a and method b is significant at a level better than 1 percent using a two-tailed sign
test.

It is clear that, over the 18 data sets, SCANN holds a statistically significant advan­
tage on 7 sets improving upon PV's classification error by 3-50 percent. Unlike the
other combiners, SCANN posts no statistically significant losses to PV (i.e., there
were 4 losses each for S-BP and S-Bayes). With the exception of the retardation
data set, SCANN consistently performs as well or better than the best individual
learned model. In the direct comparison of SCANN with the S-BP and S-Bayes,
SCANN posts 5 and 4 significant wins, respectively, and no losses.

The most dramatic improvement of the combiners over PV came in the abalone
data set. A closer look at the results revealed that 7 of the 8 learned models
were very poor classifiers with error rates around 80 percent, and the errors of the
poor models were highly correlated. This empirically demonstrates PV's known
sensitivity to learned models with highly correlated errors. On the other hand, PV
performs well on the glass and wave data sets where the errors of the learned models
are measured to be fairly uncorrelated. Here, SCANN performs similarly to PV,
but S-BP and S-Bayes appear to be overfitting by making erroneous predictions
based on insignificant variations on the predictions of the learned models.

5 Conclusion

A novel method has been introduced for combining the predictions of heterogeneous
or homogeneous classifiers. It draws upon the methods of stacking, correspondence
analysis and nearest neighbor. In an empirical analysis, the method proves to be
insensitive to poor learned models and matches the performance of plurality voting
as the errors of the learned models become less correlated.

References

[Ali and Pazzani, 1996) Ali, K. and Pazzani, M. (1996). Error reduction through
learning multiple descriptions. Machine Learning, 24:173.

Combining Classifiers Using Correspondence Analysis 597

[Breiman, 1996] Breiman, L. (1996). Bagging predictors. Machine Learning,
24(2):123-40.

[Clark and Niblett, 1989] Clark, P. and Niblett, T. (1989). The CN2 induction
algorithm. Machine Learning, 3(4):261-283.

[Cost, 1993] Cost, S.; Salzberg, S. (1993). A weighted nearest neighbor algorithm
for learning with symbolic features. Machine Learning, 10(1):57-78.

[Efron and Tibshirani, 1993] Efron, B. and Tibshirani, R. (1993). An Introduction
to the Bootstrap. Chapman and Hall, London and New York.

[Freund, 1995] Freund, Y. (1995). Boosting a weak learning algorithm by majority.
Information and Computation, 121(2):256-285. Also appeared in COLT90.

[Greenacre, 1984] Greenacre, M. J. (1984). Theory and Application of Correspon­
dence Analysis. Academic Press, London.

[Kong and Dietterich, 1995] Kong, E. B. and Dietterich, T. G. (1995). Error­
correcting output coding corrects bias and variance. In Proceedings of the 12th
International Conference on Machine Learning, pages 313-321. Morgan Kauf­
mann.

[Meir, 1995] Meir, R. (1995). Bias, variance and the combination ofleast squares es­
timators. In Tesauro, G., Touretzky, D., and Leen, T., editors, Advances in Neural
Information Processing Systems, volume 7, pages 295-302. The MIT Press.

[Merz, 1997] Merz, C. (1997). Using correspondence analysis to combine classifiers.
Submitted to Machine Learning.

[Merz and Murphy, 1996] Merz, C. and Murphy, P. (1996). UCI repository of ma­
chine learning databases.

[Merz and Pazzani, 1997] Merz, C. J. and Pazzani, M. J. (1997). Combining neu­
ral network regression estimates with regularized linear weights. In Mozer, M.,
Jordan, M., and Petsche, T., editors, Advances in Neural Information Processing
Systems, volume 9. The MIT Press.

[Opitz and Shavlik, 1996] Opitz, D. W. and Shavlik, J. W. (1996). Generating
accurate and diverse members of a neural-network ensemble. In Touretzky, D. S.,
Mozer, M. C., and Hasselmo, M. E., editors, Advances in Neural Information
Processing Systems, volume 8, pages 535-541. The MIT Press.

[Perrone, 1994] Perrone, M. P. (1994). Putting it all together: Methods for com­
bining neural networks. In Cowan, J. D., Tesauro, G., and Alspector, J., editors,
Advances in Neural Information Processing Systems, volume 6, pages 1188-1189.
Morgan Kaufmann Publishers, Inc.

[Quinlan, 1993] Quinlan, R. (1993). G..4-5 Programs for Machine Learning. Morgan
Kaufmann, San Mateo, CA.

[Rumelhart et al., 1986] Rumelhart, D. E., Hinton, G. E., and Williams, R. J.
(1986). Learning internal representations by error propagation. In Rumelhart,
D. E., McClelland, J. 1., and the PDP research group., editors, Parallel dis­
tributed processing: Explorations in the microstructure of cognition, Volume 1:
Foundations. MIT Press.

[Salzberg; and Beigel, 1993] Salzberg;, S. M. S. K. S. and Beigel, R. (1993). OC1:
Randomized induction of oblique decision trees. In Proceedings of AAAI-93.
AAAI Pres.

[Wolpert, 1992] Wolpert, D. H. (1992). Stacked generalization. Neural Networks,
5:241-259.

