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Abstract 

We first describe a hierarchical, generative model that can be 
viewed as a non-linear generalisation of factor analysis and can 
be implemented in a neural network. The model performs per­
ceptual inference in a probabilistically consistent manner by using 
top-down, bottom-up and lateral connections. These connections 
can be learned using simple rules that require only locally avail­
able information. We then show how to incorporate lateral con­
nections into the generative model. The model extracts a sparse, 
distributed, hierarchical representation of depth from simplified 
random-dot stereograms and the localised disparity detectors in 
the first hidden layer form a topographic map. When presented 
with image patches from natural scenes, the model develops topo­
graphically organised local feature detectors. 

1 Introduction 

Factor analysis is a probabilistic model for real-valued data which assumes that 
the data is a linear combination of real-valued uncorrelated Gaussian sources (the 
factors). After the linear combination, each component of the data vector is also 
assumed to be corrupted by additional Gaussian noise. A major advantage of this 
generative model is that, given a data vector, the probability distribution in the 
space of factors is a multivariate Gaussian whose mean is a linear function of the 
data. It is therefore tractable to compute the posterior distribution exactly and to 
use it when learning the parameters of the model (the linear combination matrix 
and noise variances). A major disadvantage is that factor analysis is a linear model 
that is insensitive to higher order statistical structure of the observed data vectors. 

One way to make factor analysis non-linear is to use a mixture of factor analyser 
modules, each of which captures a different linear regime in the data [3]. We can 
view the factors of all of the modules as a large set of basis functions for describing 
the data and the process of selecting one module then corresponds to selecting 
an appropriate subset of the basis functions. Since the number of subsets under 
consideration is only linear in the number of modules, it is still tractable to compute 
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the full posterior distribution when given a data point. Unfortunately, this mixture 
model is often inadequate. Consider, for example, a typical image that contains 
multiple objects. To represent the pose and deformation of each object we want 
a componential representation of the object's parameters which could be obtained 
from an appropriate factor analyser. But to represent the multiple objects we need 
several of these componential representations at once, so the pure mixture idea is 
not tenable. A more powerful non-linear generalisation of factor analysis iF to have 
a large set of factors and to allow any subset of the factors to be selected. This 
can be achieved by using a generative model in which there is a high probability of 
generating factor activations of exactly zero. 

2 Rectified Gaussian Belief Nets 

The Rectified Gaussian Belief Net (RGBN) uses multiple layers of units with states 
that are either positive real values or zero [5]. Its main disadvantage is that com­
puting the posterior distribution over the factors given a data vector involves Gibbs 
sampling. In general, Gibbs sampling can be very time consuming, but in practice 
10 to 20 samples per unit have proved adequate and there are theoretical reasons 
for believing that learning can work well even when the Gibbs sampling fails to 
reach equilibrium [10]. 

We first describe the RGBN without considering neural plausibility. Then we show 
how lateral interactions within a layer can be used to perform probabilistic infer­
ence correctly using locally available information. This makes the RGBN far more 
plausible as a neural model than a sigmoid belief net [9, 8] because it means that 
Gibbs sampling can be performed without requiring units in one layer to see the 
total top-down input to units in the layer below. 

The generative model for RGBN's consists of multiple layers of units each of which 
has a real-valued unrectified state, Yj, and a rectified state, [Yj]+, which is zero if 
Yj is negative and equal to Yj otherwise. This rectification is the only non-linearity 
in the network. 1 The value of Yj is Gaussian distributed with a standard deviation 
(Jj and a mean, ih that is determined by the generative bias, gOj, and the combined 
effects of the rectified states of units, k, in the layer above: 

Yj = gOj + Lgkj[Yk]+ 
k 

(1) 

The rectified state [Yj]+ therefore has a Gaussian distribution above zero, but all 
of the mass of the Gaussian that falls below zero is concentrated in an infinitely 
dense spike at zero as shown in Fig. la. This infinite density creates problems if we 
attempt to use Gibbs sampling over the rectified states, so, following a suggestion 
by Radford Neal, we perform Gibbs sampling on the unrectified states. 

Consider a unit, j, in some intermediate layer of a multilayer RGBN. Suppose 
that we fix the unrectified states of all the other units in the net. To perform Gibbs 
sampling, we need to stochastically select a value for Yj according to its distribution 
given the unrectified states of all the other units. If we think in terms of energy 
functions, which are equal to negative log probabilities (up to a constant), the 
rectified states of the units in the layer above contribute a quadratic energy term 
by determining Yj. The unrectified states of units, i, in the layer below contribute a 
constant if [Yj]+ is 0, and if [Yj]+ is positive they each contribute a quadratic term 

1 The key arguments presented in this paper hold for general nonlinear belief networks 
as long as the noise is Gaussian; they are not specific to the rectification nonlinearity. 
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Figure 1: a) Probability den­
sity in which all the mass of a 
Gaussian below zero has been 
replaced by an infinitely dense 
spike at zero. b) Schematic 
of the density of a unit's un­
rectified state. c) Bottom­
up and top-down energy func­
tions corresponding to b. 

(2) 

where h is an index over all the units in the same layer as j including j itself. Terms 
that do not depend on Yj have been omitted from Eq. 2. For values of Yj below zero 
there is a quadratic energy function which leads to a Gaussian distribution. The 
same is true for values of Yj above zero, but it is a different quadratic (Fig. Ic) . The 
Gaussian distributions corresponding to the two quadratics must agree at Yj = 0 
(Fig. Ib). Because this distribution is piecewise Gaussian it is possible to perform 
Gibbs sampling exactly. 

Given samples from the posterior, the generative weights of a RGBN can be learned 
by using the online delta rule to maximise the log probability of the data. 2 

(3) 

The variance of the local Gaussian noise of each unit, o}, can also be learned by 
an online rule, D-.o} = f [(Yj - Yj)2 - o}]. Alternatively, o} can be fixed at I for 
all hidden units and the effective local noise level can be controlled by scaling the 
generative weights. 

3 The Role of Lateral Connections in Perceptual Inference 

In RGBNs and other layered belief networks, fixing the value of a unit in one layer 
causes correlations between the parents of that unit in the layer above. One of 
the main reasons why purely bottom-up approaches to perceptual inference have 
proven inadequate for learning in layered belief networks is that they fail to take 
into account this phenomenon, which is known as "explaining away." 

Lee and Seung (1997) introduced a clever way of using lateral connections to handle 
explaining away effects during perceptual inference. Consider the network shown 
in Fig. 2. One contribution, Ebelow, to the energy of the state of the network is 
the squared difference between the unrectified states of the units in one layer, Yj, 
a.nd the top-down expectations generated by the states of units in the layer above. 
Assuming the local noise models for the lower layer units all have unit variance, and 

2 If Gibbs sampling has not been run long enough to reach equilibrium, the delta rule 
follows the gradient of the penalized log probability of the data [10]. The penalty term is 
the Kullback-Liebler divergence between the equilibrium distribution and the distribution 
produced by Gibbs sampling. Other things being equal, the delta rule therefore adjusts 
the parameters that determine the equilibrium distribution to reduce this penalty, thus 
favouring models for which Gibbs sampling works quickly. 
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ignoring biases and constant terms that are unaffected by the states of the units 

Ebe\ow = ~ l:)Yj - Yj)2 = ~ I)Yj - 2:k[Yk]+9kj)2. 
j j 

(4) 

Rearranging this expression and setting rjk = gkj and mkl = - Lj gkjglj we get 

Ebe\ow = ~ LyJ - L[Yk]+ LYjrjk - ~ L[Yk]+ L[y!l+mkl . (5) 
j k j k I 

This energy function can be exactly implemented in a network with recognition 
weights, rjk, and symmetric lateral interactions, mkl. The lateral and recognition 
connections allow a unit, k, to compute how Ebe\ow for the layer below depends on 
its own state and therefore they allow it to follow the gradient of E or to perform 
Gibbs sampling in E . 

Figure 2: A small segment of a network, 
showing the generative weights (dashed) and 
the recognition and lateral weights (solid) 
which implement perceptual inference and 
correctly handle explaining away effects. 

Seung's trick can be used in an RGBN and it eliminates the most neurally implau­
sible aspect of this model which is that a unit in one layer appears to need to send 
both its state Y and the top-down prediction of its state Y to units in the layer above. 
Using the lateral connections, the units in the layer above can, in effect, compute 
all they need to know about the top-down predictions. In computer simulations, we 
can simply set each lateral connection mkl to be the dot product - 2:j gkjglj. It is 
also possible to learn these lateral connections in a more biologically plausible way 
by driving units in the layer below with unit-variance independent Gaussian noise 
and using a simple anti-Hebbian learning rule. Similarly, a purely local learning 
rule can learn recognition weights equal to the generative weights . . If units at one 
layer are driven by unit-variance, independent Gaussian noise, and these in turn 
drive units in the layer below using the generative weights, then Hebbian learning 
between the two layers will learn the correct recognition weights [5]. 

4 Lateral Connections in the Generative Model 

When the generative model contains only top-down connections, lateral connections 
make it possible to do perceptual inference using locally available information. But 
it is also possible, and often desirable, to have lateral connections in the generative 
model. Such connections can cause nearby units in a layer to have a priori correlated 
activities, which in turn can lead to the formation of redundant codes and, as we 
will see, topographic maps. 

Symmetric lateral interactions between the unrectified states of units within a layer 
have the effect of adding a quadratic term to the energy function 

EMRF = ~ L: L Mkl YkYI, (6) 
k I 

which corresponds to a Gaussian Markov Random Field (MRF). During sampling, 
this term is simply added to the top-down energy contribution. Learning is more 
difficult. The difficulty sterns from the need to know the derivatives of the partition 
function of the MRF for each data vector. This partition function depends on the 
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top-down inputs to a layer so it varies from one data vector to the next, even if the 
lateral connections themselves are non-adaptive. Fortunately, since both the MRF 
and the top-down prediction define Gaussians over the states of the units in a layer, 
these derivatives can be easily calculated. Assuming unit variances, 

tlYj; = , ([Yj]+(Y; - ii;) + [Yj]+ ~ [M(I + M)-ll;. ii.) (7) 

where M is the MRF matrix for the layer including units i and k, and I is the identity 
matrix. The first term is the delta rule (Eq. 3); the second term is the derivative 
of the partition function which unfortunately involves a matrix inversion. Since 
the partition function for a multivariate Gaussian is analytical it is also possible to 
learn the lateral connections in the MRF. 

Lateral interactions between the rectified states of units add the quadratic term 
~ Lk Ll Mkl [Yk]+[YzJ+· The partition function is no longer analytical, so comput­
ing the gradient of the likelihood involves a two-phase Boltzmann-like procedure: 

!19ji = f ([Yj]+Yi) * - ([Yj]+Yi r) , (8) 

where 0* averages with respect to the posterior distribution of Yi and Yj, and 0-
averages with respect to the posterior distribution of Yj and the prior of Yi given 
units in the same layer as j. This learning rule suffers from all the problems of 
the Boltzmann machine, namely it is slow and requires two-phases. However, there 
is an approximation which results in the familiar one-phase delta rule that can 
be described in three equivalent ways: (1) it treats the lateral connections in the 
generative model as if they were additional lateral connections in the recognition 
model; (2) instead of lateral connections in the generative model it assumes some 
fictitious children with clamped values which affect inference but whose likelihood 
is not maximised during learning; (3) it maximises a penalized likelihood of the 
model without the lateral connections in the generative model. 

5 Discovering depth in simplified stereograms 

Consider the following generative process for stereo pairs. Random dots of uniformly 
distributed intensities are scattered sparsely on a one-dimensional surface, and the 
image is blurred with a Gaussian filter. This surface is then randomly placed at one 
of two different depths, giving rise to two possible left-to-right disparities between 
the images seen by each eye. Separate Gaussian noise is then added to the image 
seen by each eye. Some images generated in this manner are shown in Fig. 3a. 

Figure 3: a) Sample data from the stereo 
disparity problem. The left and right column 
of each 2 x 32 image are the inputs to the left 
and right eye, respectively. Periodic bound­
ary conditions were used. The value of a pixel 
is represented by the size of the square, with 
white being positive and black being nega­
tive. Notice that pixel noise makes it difficult 
to infer the disparity, i.e. the vertical shift 
between the left and right columns, in some 
images. b) Sample images generated by the 
model after learning. 

We trained a three-layer RGBN consisting of 64 visible units, 64 units in the first 
hidden layer and 1 unit in the second hidden layer on the 32-pixel wide stereo 
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disparity problem. Each of the hidden units in the first hidden layer was connected 
to the entire array of visible units, i.e. it had inputs from both eyes. The hidden 
units in this layer were also laterally connected in an MRF over the unrectified 
units. Nearby units excited each other and more distant units inhibited each other, 
with the net pattern of excitation/inhibition being a difference of two Gaussians. 
This MRF was initialised with large weights which decayed exponentially to zero 
over the course of training. The network was trained for 30 passes through a data 
set of 2000 images. For each image we used 16 iterations of Gibbs sampling to 
approximate the posterior distribution over hidden states. Each iteration consisted 
of sampling every hidden unit once in a random order. The states after the fourth 
iteration of Gibbs sampling were used for learning, with a learning rate of 0.05 and 
a weight decay parameter of 0.001. Since the top level of the generative process 
makes a discrete decision between left and right global disparity we used a trivial 
extension of the RGBN in which the top level unit saturates both at 0 and 1. 

a ._--="TI:~£:I=-[J __ IEI[I:I _1II_-=-_.-:rr::JI...___I:IIUI::JI-L1D-.--:tIl::Jl-=-::l .-'-' _______ OW''--o--.,u'-'-''__=_-..._.-'-"._ 

b 

c 

Figure 4: Generative weights of a three-layered RGBN after being trained on the stereo 
disparity problem. a) Weights from the top layer hidden unit to the 64 middle-layer hidden 
units. b) Biases of the middle-layer hidden units, and c) weights from the hidden units to 
the 2 x 32 visible array. 

Thirty-two of the hidden units learned to become local left-disparity detectors, while 
the other 32 became local right-disparity detectors (Fig. 4c). The unit in the second 
hidden layer learned positive weights to the left-disparity detectors in the layer 
below, and negative weights to the right detectors (Fig. 4a). In fact, the activity 
of this top unit discriminated the true global disparity of the input images with 
99% accuracy. A random sample of images generated by the model after learning is 
shown in Fig. 3b. In addition to forming a hierarchical distributed representation 
of disparity, units in the hidden layer self-organised into a topographic map. The 
MRF caused high correlations between nearby units early in learning, which in 
turn resulted in nearby units learning similar weight vectors. The emergence of 
topography depended on the strength of the MRF and on the speed with which it 
decayed. Results were relatively insensitive to other parametric changes. 

We also presented image patches taken from natural images [1] to a network with 
units in the first hidden layer arranged in laterally-connected 2D grid. The network 
developed local feature detectors, with nearby units responding to similar features 
(Fig. 5). Not all units were used, but the unused units all clustered into one area. 

6 Discussion 

Classical models of topography formation such as Kohonen's self-organising map [6] 
and the elastic net [2, 4] can be thought of as variations on mixture models where 
additional constraints have been placed to encourage neighboring hidden units to 
have similar generative weights . The problem with a mixture model is that it cannot 
handle images in which there are several things going on at once. In contrast, we 
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Figure 5: Generative weights of an 
RGBN trained on 12 x 12 natural 
image patches: weights from each 
of the 100 hidden units which were 
arranged in a 10 x 10 sheet with 
toroidal boundary conclitions. 

have shown that topography can arise in much richer hierarchical and componential 
generative models by inducing correlations between neighboring units. 

There is a sense in which topography is a necessary consequence of the lateral 
connection trick used for perceptual inference. It is infeasible to interconnect all 
pairs of units in a cortical area. If we assume that direct lateral interactions (or 
interactions mediated by interneurons) are primarily local, then widely separated 
units will not have the apparatus required for explaining away. Consequently the 
computation of the posterior distribution will be incorrect unless the generative 
weight vectors of widely separated units are orthogonal. If the generative weights 
are constrained to be positive, the only way two vectors can be orthogonal is for 
each to have zeros wherever the other has non-zeros. Since the redundancies that 
the hidden units are trying to model are typically spatially localised, it follows 
that widely separated units must attend to different parts of the image and units 
can only attend to overlapping patches if they are laterally interconnected. The 
lateral connections in the generative model assist in the formation of the topography 
required for correct perceptual inference. 
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