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Abstract 

We consider neural network models for stochastic nonlinear dynamical 
systems where measurements of the variable of interest are only avail­
able at irregular intervals i.e. most realizations are missing. Difficulties 
arise since the solutions for prediction and maximum likelihood learn­
ing with missing data lead to complex integrals, which even for simple 
cases cannot be solved analytically. In this paper we propose a spe­
cific combination of a nonlinear recurrent neural predictive model and 
a linear error model which leads to tractable prediction and maximum 
likelihood adaptation rules. In particular, the recurrent neural network 
can be trained using the real-time recurrent learning rule and the linear 
error model can be trained by an EM adaptation rule, implemented us­
ing forward-backward Kalman filter equations. The model is applied to 
predict the glucose/insulin metabolism of a diabetic patient where blood 
glucose measurements are only available a few times a day at irregular 
intervals. The new model shows considerable improvement with respect 
to both recurrent neural networks trained with teacher forcing or in a free 
running mode and various linear models. 

1 INTRODUCTION 

In many physiological dynamical systems measurements are acquired at irregular intervals. 
Consider the case of blood glucose measurements of a diabetic who only measures blood 
glucose levels a few times a day. At the same time physiological systems are typically 
highly nonlinear and stochastic such that recurrent neural networks are suitable models. 
Typically, such networks are either used purely free running in which the networks predic­
tions are iterated, or in a teacher forcing mode in which actual measurements are substituted 
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if available. In Section 2 we show that both approaches are problematic for highly stochas­
tic systems and if many realizations of the variable of interest are unknown. The traditional 
solution is to use a stochastic model such as a nonlinear state space model. The problem 
here is that prediction and training missing data lead to integrals which are usually con­
sidered intractable (Lewis, 1986). Alternatively, state dependent linearizations are used for 
prediction and training, the most popular example being the extended Kalman filter. In this 
paper we introduce a combination of a nonlinear recurrent neural predictive model and a 
linear error model which leads to tractable prediction and maximum likelihood adaptation 
rules. The recurrent neural network can be used in all generality to model the nonlinear 
dynamics of the system. The only limitation is that the error model is linear which is not 
a major constraint in many applications. The first advantage of the proposed model is that 
for single or multiple step prediction we obtain simple iteration rules which are a combi­
nation of the output of the iterated neural network and a linear Kalman filter which is used 
for updating the linear error model. The second advantage is that for maximum likelihood 
learning the recurrent neural network can be trained using the real-time recurrent learning 
rule RTRL and the linear error model can be trained by an EM adaptation rule, imple­
mented using forward-backward Kalman filter equations. We apply our model to develop a 
model of the glucose/insulin metabolism of a diabetic patient in which blood glucose mea­
surements are only available a few times a day at irregular intervals and compare results 
from our proposed model to recurrent neural networks trained and used in the free running 
mode or in the teacher forcing mode as well as to various linear models. 

2 RECURRENT SYSTEMS WITH MISSING DATA 
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Figure 1: A neural network predicts the next value of a time-series based on the latest two 
previous measurements (left). As long as no measurements are available (t = 1 to t = 6), 
the neural network is iterated (unfilled circles). In a free-running mode, the neural network 
would ignore the measurement at time t = 7 to predict the time-series at time t = 8. In a 
teacher forcing mode, it would substitute the measured value for one of the inputs and use 
the iterated value for the other (unknown) input. This appears to be suboptimal since our 
knowledge about the time-series at time t = 7 also provides us with information about the 
time-series at time t = 6. For example the dotted circle might be a reasonable estimate. By 
using the iterated value for the unknown input, the prediction of the teacher forced system 
is not well defined and will in general lead to unsatisfactory results. A sensible response 
is shown on the right where the first few predictions after the measurement are close to the 
measurement. This can be achieved by including a proper error model (see text). 

Consider a deterministic nonlinear dynamical model of the form 

Yt = !w(Yt-l," ·,Yt-N,Ut) 

of order N, with input Ut and where ! w (.) is a neural network model with parameter­
vector w. Such a recurrent model is either used in a free running mode in which network 
predictions are used in the input of the neural network or in a teacher forcing mode where 
measurements are substituted in the input of the neural network whenever these are avail­
able. 
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Figure 2: Left: The proposed architecture. Right: Linear impulse response. 

Both can lead to undesirable results when many realizations are missing and when the sys­
tem is highly stochastic. Figure 1 (left) shows that a free running model basically ignores 
the measurement for prediction and that the teacher forced model substitutes the measured 
value but leaves the unknown states at their predicted values which also might lead to un­
desirable responses. The traditional solution is to include a model of the error which leads 
to nonlinear stochastical models, the simplest being 

Yt = fw (Yt-l,.'" Yt-N, utJ + lOt 

where lOt is assumed to be additive uncorrelated zero-mean noise with probability den­
sity P€ (f) and represents unmodeled system dynamics. For prediction and learning with 
missing values we have to integrate over the unknowns which leads to complex integrals 
which, for nonlinear models, have to be approximated. for example, using Monte Carlo 
integration. l In general, those integrals are computationally too expensive to solve and, in 
practice, one relies on locally linearized approximations of the nonlinearities typically in 
form of the extended Kalman filter. The extended Kalman filter is suboptimal and summa­
rizes past data by an estimate of the means and the covariances of the variables involved 
(Lewis, 1986). 

In this paper we pursue an alternative approach. Consider the model with state updates 
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and with measurement equation 

(1) 

(2) 

(3) 

Zt=Yt+Ot. (4) 

where lOt and Ot denote additive noise. The variable of interest Yt is now the sum of the 
deterministic response of the recurrent neural network Y; and a linear system error model 
Xt (Figure 2). Zt is a noisy measurement of Yt. In particular we are interested in the special 
cases that Yt can be measured with certainty (variance of Ot is zero) or that a measurement 
is missing (variance of Ot is infinity). The nice feature is now that Y; can be considered 
a deterministic input to the state space model consisting of the equations (2)- (3). This 
means that for optimal one-step or multiple-step prediction, we can use the linear Kalman 
filter for equations (2)- (3) and measurement equation (4) by treating Y; as deterministic 
input. Similarly, to train the parameters in the linear part of the system (i.e. {Oi }f:l) we can 
use an EM adaptation rule, implemented using forward-backward Kalman filter equations 
(see the Appendix). The deterministic recurrent neural network is adapted with the residual 
error which cannot be explained by the linear model, i.e. target~nn = y": - :Wnear 

1 For maximum likelihood learning of linear models we obtain EM equations which can be solved 
using forward-backward Kalman equations (see Appendix). 
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where Y~ is a measurement ofYt at time t and where f)/near is the estimate of the linear 
model. After the recurrent neural network is adapted the linear model can be retrained 
using the residual error which cannot be explained by the neural network. then again the 
neural network is retrained and so on until no further improvement can be achieved. 

The advantage of this approach is that all of the nonlinear interactions are modeled by 
a recurrent neural network which can be trained deterministically. The linear model is 
responsible for the noise model which can be trained using powerful learning algorithms 
for linear systems. The constraint is that the error model cannot be nonlinear which often 
might not be a major limitation. 

3 BLOOD GLUCOSE PREDICTION OF A DIABETIC 

The goal of this work is to develop a predictive model of the blood glucose ofa person with 
type 1 Diabetes mellitus. Such a model can have several useful applications in therapy: 
it can be used to warn a person of dangerous metabolic states, it can be used to make 
recommendations to optimize the person's therapy and, finally, it can be used in the design 
of a stabilizing control system for blood glucose regulation, a so-called "artificial beta cell" 
(Tresp, Moody and Delong, 1994). We want the model to be able to adapt using patient data 
collected under normal every day conditions rather than the controlled conditions typical 
of a clinic. In a non-clinical setting, only a few blood glucose measurements per day are 
available. 

Our data set consists of the protocol ofa diabetic over a period of almost six months. Dur­
ing that time period, times and dosages of insulin injections (basal insulin ut and normal 
insulin u;), the times and amounts of food intake (fast u~, intermediate ut and slow u~ 
carbohydrates), the times and durations of exercise (regular u~ or intense ui) and the blood 
glucose level Yt (measured a few times a day) were recorded. The u{, j = 1, ... ,7 are 
equal to zero except if there is an event, such as food intake, insulin injection or exercise. 
For our data set, inputs u{ were recorded with 15 minute time resolution. We used the first 
43 days for training the model (containing 312 measurements of the blood glucose) and the 
following 21 days for testing (containing 151 measurements of the blood glucose). This 
means that we have to deal with approximately 93% of missing data during training. 

The effects on insulin, food and exercise on the blood glucose are delayed and are approx­
imated by linear response functions. v{ describes the effect of input u{ on glucose. As an 
example, the response vt of normal insulin u; after injection is determined by the diffusion 
of the subcutaneously injected insulin into the blood stream and can be modeled by three 
first order compartments in series or, as we have done, by a response function of the form 
vt = l:T g2(t - r)u; withg2(t) = a2t2e-b2t (see figure 2 for a typical impulse response). 
The functional mappings gj (.) for the digestive tract and for exercise are less well known. 
In our experiments we followed other authors and used response functions of the above 
form. 

The response functions 9 j ( .) describe the delayed effect of the inputs on the blood glucose. 
We assume that the functional form of gj (.) is sufficient to capture the various delays of the 
inputs and can be tuned to the physiology of the patient by varying the parameters aj ,bj . 

To be able to capture the highly nonlinear physiological interactions between the response 
functions vi and the blood glucose level Yt, which is measured only a few times a day, we 
employ a neural network in combination with a linear error model as described in Section 2. 
In our experiments fw (.) is a feedforward multi-layer perceptron with three hidden units. 
The five inputs to the network were insulin (in; = vi + v;>, food (in; = vf + vt + vt), 
exercise (inr = vf + vi) and the current and previous estimate of the blood glucose. To be 
specific, the second order nonlinear neural network model is 

* * f (. * . 1 . 2 . 3) Yt = Yt-l + W Yt_llYt_2,lnt ,znt ,znt (5) 
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For the linear error model we also use a model of order 2 

(6) 

Table 1 shows the explained variance of the test set for different predictive models. 2 

In the first experiment (RNN-FR) we estimate the blood glucose at time t as the output 
of the neural network Yt = y;. The neural network is used in the free running mode for 
training and prediction. We use RTRL to both adapt the weights in the neural network as 
well as all parameters in the response functions 9j (.). The RNN-FR model explains 14.1 
percent of the variance. The RNN-TF model is identical to the previous experiment except 
that measurements are substituted whenever available. RNN-TF could explain more of the 
variance (18.8%). The reason for the better performance is, of course, that information 
about measurements of the blood glucose can be exploited. 

The model RNN-LEM2 (error model with order 2) corresponds to the combination of the 
recurrent neural network and the linear error model as introduced in Section 2. Here, 
Yt = Xt + Y; models the blood glucose and Zt = Yt + 8t is the measurement equation 
where we set the variance of 8t = 0 for a measurement of the blood glucose at time t and 
the variance of 8t = 00 for missing values. For ft we assume Gaussian independent noise. 
For prediction, equation (5) is iterated in the free running mode. The blood glucose at time 
t is estimated using a linear Kalman filter, treating Y; as deterministic input in the state 
space model Yt = x t + Y; ,Zt = Yt + 8t . We adapt the parameters in the linear error model 
(i.e. (h, O2 , the variance of ft) using an EM adaptation rule, implemented using forward­
backward Kalman filter equations (see Appendix). The parameters in the neural network 
are adapted using RTRL exactly the same way as in the RNN-FR model, except that the 
target is now target~nn = yr - iftinear where yr is a measurement of Yt at time t and 
where iftinear is the estimate of the linear error model (based on the linear Kalman filter). 
The adaptation of the linear error model and the neural network are performed aIternatingly 
until no significant further improvement in performance can be achieved. 

As indicated in Table 1, the RNN-LEM2 model achieves the best prediction performance 
with an explained variance of 44.9% (first order error model RNN-LEMI: 43.7%). As 
a comparison, we show the performance of just the linear error model LEM (this model 
ignores all inputs), a linear model (LM-FR) without an error model trained with RTRL and 
a linear model with an error model (LM-LEM). Interestingly, the linear error model which 
does not see any of the inputs can explain more variance (12.9%) than the LM-FR model 
(8.9%). The LM-LEM model, which can be considered a combination of both can ex­
plain more than the sum of the individual explained variances (31.5%) which indicates that 
the combined training gives better perfonnance than training both submodels individually. 
Note also, that the nonlinear models (RNN-FR, RNN-TF, RNN-LEM) give considerably 
better results than their linear counterparts, confirming that the system is highly nonlinear. 

Figure 3 (left) shows an example of the responses of some of the models. We see that 
the free running neural network (dotted line) has relatively small amplitudes and cannot 
predict the three measurements very well. The RNN-TF model (dashed line) shows a 
better response to the measurements than the free running network. The best prediction of 
all measurements is indeed achieved by the RNN-LEM model (continuous line). 

Based on the linear iterated Kalman filter we can calculate the variance of the prediction. 
As shown in Figure 3 (right) the standard deviation is small right after a measurement is 
available and then converges to a constant value. Based on the prediction and the estimated 
variance, it will be possible to do a risk analysis for the diabetic (i.e a warning of dangerous 
metabolic states). 

2MSPE(model) is the mean squared prediction error on the test set of the model and 
MSPE( mean) is the mean squared prediction error of predicting the mean. 
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Figure 3: Left: Responses of some models to three measurements. Note, that the prediction 
of the first measurement is bad for all models but that the RNN-LEM model (continuous 
line) predicts the following measurements much better than both the RNN -FR (dotted) and 
the RNN-TF (dashed) model. Right: Standard deviation of prediction error ofRNN-LEM. 

Table 1: Explained variance on test set [in percent]: 100 . (1 - ~;~~ ::~~ ) 
MODEL % MODEL % 

mean 0 RNN-TF 18.8 
LM 8.9 LM-LEM 3l.4 
LEM 12.9 RNN-LEMl 43.7 
RNN-FR 14.1 RNN-LEM2 44.9 

4 CONCLUSIONS 

We introduced a combination of a nonlinear recurrent neural network and a linear error 
model. Applied to blood glucose prediction it gave significantly better results than both 
recurrent neural networks alone and various linear models. Further work might lead to a 
predictive model which can be used by a diabetic on a daily bases. We believe that our re­
sults are very encouraging. We also expect that our specific model can find applications in 
other stochastical nonlinear systems in which measurements are only available at irregular 
intervals such that in wastewater treatment, chemical process control and various physio­
logical systems. Further work will include error models for the input measurements (for 
example, the number of food calories are typically estimated with great uncertainty). 

Appendix: EM Adaptation Rules for Training the Linear Error Model 

Model and observation equations of a general model are3 

Xt = eXt-l + ft Zt = MtXt + 8t . (7) 

where e is the K x K transition matrix ofthe K -order linear error model. The K x 1 noise 
terms (t are zero-mean uncorrelated normal vectors with common covariance matrix Q. 8t 
is m-dimensional 4 zero-mean uncorrelated normal noise vector with covariance matrix 
Rt • Recall that we consider certain measurements and missing values as special cases of 

3Note, that any linear system of order K can be transformed into a first order linear system of 
dimension K. 

4 m indicates the dimension of the output of the time-series. 
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noisy measurements. The initial state of the system is assumed to be a normal vector with 
mean Jl and covariance E. 

We describe the EM equations for maximizing the likelihood of the model. Define the 
estimated parameters at the (r+ l)st iterate of EM as the values Jl, E, e, Q which maximize 

G(Jl, E, e, Q) = Er (log Llzl, ... , zn) (8) 

where log L is log-likelihood of the complete data Xo, Xl, ••• , X n , ZI, • .• , Zn and Er de­
notes the conditional expectation relative to a density containing the rth iterate values 
Jl(r), E(r), e(r) and Q(r). Recall that missing targets are modeled implicitly by the defi­
nition of M t and Rt . 

For calculating the conditional expectation defined in (8) the following set of recursions 
are used (using standard Kalman filtering results, see (Jazwinski, 1970)). First, we use the 
forward recursion 

t-l e t-l X t - x t _ l 

pt-l ept-leT + Q 
t t-l 
K t P/-lMtT(MtP/-IMtT + Rt)-1 (9) 
Xt t-l + r.' (* M t-l) t x t I'q Yt - tXt 
Pi ptt-l - K t M t P;-1 

where we take xg = Jl and p3 = E. Next, we use the backward recursion 

J Pt-leT(pt-l)-l 
t-l t-l t 

X~_l x~=~ + Jt-l(X~ - ex~=D 
Ptn_l p:~t + Jt-dPr - p;-l)J?'_l 

(10) 

pr-l,t-2 P/~11JL2 + Jt-dPtt-l - ePtt~l)Jt~2 
with initialization p;: n-l = (1 - KnMn)ep;:::l. One forward and one backward recur­
sion completes the E-'step of the EM algorithm. 

To derive the M-step first realize that the conditional expectations in (8) yield to the fol­
lowing equation: 

G = -~ log IEI- !tr{E-l(Pon + (xo - Jl)(xo - Jl)T)} 
-% log IQI-1tr{Q-l(C - BeT - eBT - eAeT)} 
-% log IRtl- !tr{R;-l E~l[(Y; - Mtxt)(y; - Mtxd T + MtprMtT]} 

where tr{.} denotes the trace, A = E~=l (pr-l + xr_lx~:d, 

B = E~=l(Pt~t-l + X~X~:l) and C = E~=l (pr + x~x~ T). 

(11 ) 

e(r + 1) = BA- 1 and Q(r + 1) = n-1(C - BA- l BT) maximize the log-likelihood 
equation (11). Jl (r + 1) is set to Xo and E may be fixed at some reasonable baseline level. 
The derivation of these equations can be found in (Shumway & Stoffer, 1981). 

The E- (forward and backward Kalman filter equations) and M-steps are alternated repeat­
edly until convergence to obtain the EM solution. 
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