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Abstract 

Exact inference in densely connected Bayesian networks is computation­
ally intractable, and so there is considerable interest in developing effec­
tive approximation schemes. One approach which has been adopted is to 
bound the log likelihood using a mean-field approximating distribution. 
While this leads to a tractable algorithm, the mean field distribution is as­
sumed to be factorial and hence unimodal. In this paper we demonstrate 
the feasibility of using a richer class of approximating distributions based 
on mixtures of mean field distributions. We derive an efficient algorithm 
for updating the mixture parameters and apply it to the problem of learn­
ing in sigmoid belief networks. Our results demonstrate a systematic 
improvement over simple mean field theory as the number of mixture 
components is increased. 

1 Introduction 

Bayesian belief networks can be regarded as a fully probabilistic interpretation of feed­
forward neural networks. Maximum likelihood learning for Bayesian networks requires 
the evaluation of the likelihood function P(VIO) where V denotes the set of instantiated 
(visible) variables, and 0 represents the set of parameters (weights and biases) in the net­
work. Evaluation of P(VIO) requires summing over exponentially many configurations of 



Approximating Posterior Distributions in Belief Networks Using Mixtures 417 

the hidden variables H, and is computationally intractable except for networks with very 
sparse connectivity, such as trees. One approach is to consider a rigorous lower bound on 
the log likelihood, which is chosen to be computationally tractable, and to optimize the 
model parameters so as to maximize this bound instead. 

If we introduce a distribution Q (H), which we regard as an approximation to the true 
posterior distribution, then it is easily seen that the log likelihood is bounded below by 

F[Q] = L Q(H) In P(V ~H). (1) 
{H} Q( ) 

The difference between the true log likelihood and the bound given by (1) is equal to the 
Kullback-Leibler divergence between the true posterior distribution P(HIV) and the ap­
proximation Q(H). Thus the correct log likelihood is reached when Q(H) exactly equals 
the true posterior. The aim of this approach is therefore to choose an approximating distri­
bution which leads to computationally tractable algorithms and yet which is also flexible so 
as to permit a good representation of the true posterior. In practice it is convenient to con­
sider parametrized distributions, and then to adapt the parameters to maximize the bound. 
This gives the best approximating distribution within the particular parametric family. 

1.1 Mean Field Theory 

Considerable simplification results if the model distribution is chosen to be factorial over 
the individual variables, so that Q(H) = ni Q(hd, which gives meanfieid theory. Saul 
et al. (1996) have applied mean field theory to the problem of learning in sigmoid belief 
networks (Neal. 1992). These are Bayesian belief networks with binary variables in which 
the probability of a particular variable Si being on is given by 

P(S, = Ilpa(S,» =" ( ~ ],;S; + b) (2) 

where u(z) == (1 + e-Z)-l is the logistic sigmoid function, pa(Si) denote the parents of 
Si in the network. and Jij and bi represent the adaptive parameters (weights and biases) 
in the model. Here we briefly review the framework of Saul et ai. (1996) since this forms 
the basis for the illustration of mixture modelling discussed in Section 3. The mean field 
distribution is chosen to be a product of Bernoulli distributions of the form 

Q(H) = II p,~i (1 _ p,;)l-h i (3) 

in which we have introduced mean-field parameters J.Li. Although this leads to considerable 
simplification of the lower bound, the expectation over the log of the sigmoid function. 
arising from the use of the conditional distribution (2) in the lower bound (I), remains 
intractable. This can be resolved by using variational methods (Jaakkola, 1997) to find a 
lower bound on F(Q), which is therefore itself a lower bound on the true log likelihood. 
In particular, Saul et al. (1996) make use of the following inequality 

(In[l + e Zi ]) ::; ei(Zi) + In(e-~iZi + e(1-~;)Zi) (4) 

where Zi is the argument of the sigmoid function in (2), and ( ) denotes the expectation with 
respect to the mean field distribution. Again, the quality of the bound can be improved by 
adjusting the variational parameter ei. Finally, the derivatives of the lower bound with 
respect to the Jij and bi can be evaluated for use in learning. In summary. the algorithm 
involves presenting training patterns to the network. and for each pattern adapting the P,i 

and ei to give the best approximation to the true posterior within the class of separable 
distributions of the form (3). The gradients of the log likelihood bound with respect to the 
model parameters Jij and bi can then be evaluated for this pattern and used to adapt the 
parameters by taking a step in the gradient direction. 
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2 Mixtures 

Although mean field theory leads to a tractable algorithm, the assumption of a completely 
factorized distribution is a very strong one. In particular, such representations can only ef­
fectively model posterior distributions which are uni-modal. Since we expect multi-modal 
distributions to be common, we therefore seek a richer class of approximating distribu­
tions which nevertheless remain computationally tractable. One approach (Saul and Jordan, 
1996) is to identify a tractable substructure within the model (for example a chain) and then 
to use mean field techniques to approximate the remaining interactions. This can be effec­
tive where the additional interactions are weak or are few in number, but will again prove 
to be restrictive for more general, densely connected networks. We therefore consider an 
alternative approach I based on mixture representations of the form 

M 

Qmix(H) = L amQ(Hlm) (5) 
m=l 

in which each of the components Q(Hlm) is itself given by a mean-field distribution, for 
example of the form (3) in the case of sigmoid belief networks. Substituting (5) into the 
lower bound (1) we obtain 

F[Qmix] = L amF[Q(Hlm)] + f(m, H) (6) 
m 

where f(m, H) is the mutual information between the component label m and the set of 
hidden variables H, and is given by 

Q(Hlm) 
f(m,H) = L L amQ(Hlm) In Q . (H)' 

m {H} mix 

(7) 

The first tenn in (6) is simply a convex combination of standard mean-field bounds and 
hence is no greater than the largest of these and so gives no useful improvement over a 
single mean-field distribution. It is the second term, i.e. the mutual infonnation, which 
characterises the gain in using mixtures. Since f(m, H) ~ 0, the mutual information 
increases the value of the bound and hence improves the approximation to the true posterior. 

2.1 Smoothing Distributions 

As it stands, the mutual infonnation itself involves a summation over the configurations 
of hidden variables, and so is computationally intractable. In order to be able to treat it 
efficiently we first introduce a set of 'smoothing' distributions R(Hlm), and rewrite the 
mutual infonnation (7) in the form 

f(m, H) - LLamQ(Hlm)lnR(Hlm) - LamInam 
m {H} m 

- L L amQ(Hlm) In {R(H1m) Qmix(H) } . (8) 
m {H} am Q(Hlm) 

It is easily verified that (8) is equivalent to (7) for arbitrary R(Hlm). We next make use of 
the following inequality 

- In x ~ - ~x + In ~ + 1 (9) 

lHere we outline the key steps. A more detailed discussion can be found in Jaakkola and Jordan 
(1997). 
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to replace the logarithm in the third term in (8) with a linear function (conditionally on 
the component label m). This yields a lower bound on the mutual information given by 
J(m,H) ~ J),(m,H) where 

h(m,H) I:I:amQ(Hlm)lnR(Hlm)- I: am In am 
m {H} m 

- I: Am I: R(Hlm)Qmix(H) + I: am InAm + 1. (10) 
m {H} m 

With J),(m, H) substituted for J(m, H) in (6) we again obtain a rigorous lower bound on 
the true log likelihood given by 

F),[Qmix(H)] = I: amF[Q(Hlm)] + h(m, H). (11) 
m 

The summations over hidden configurations {H} in (10) can be performed analytically if 
we assume that the smoothing distributions R(Hlm) factorize. In particular, we have to 
consider the following two summations over hidden variable configurations 

I: R(Hlm)Q(Hlk) II I: R(hilm)Q(hilk) ~ 7rR,Q(m, k) (12) 
{H} i h. 

I: Q(Hlm) InR(Hlm) I: I: Q(hilm) InR(hilm) ~f H(QIIRlm). (13) 
{H} h. 

We note that the left hand sides of (12) and (13) represent sums over exponentially many 
hidden configurations, while on the right hand sides these have been re-expressed in terms 
of expressions requiring only polynomial time to evaluate by making use of the factoriza­
tion of R(Hlm). 

It should be stressed that the introduction of a factorized form for the smoothing distribu­
tions still yields an improvement over standard mean field theory. To see this, we note that 
if R(Hlm) = const. for all {H, m} then J(m, H) = 0, and so optimization over R(Hlm) 
can only improve the bound. 

2.2 Optimizing the Mixture Distribution 

In order to obtain the tightest bound within the class of approximating distributions, we can 
maximize the bound with respect to the component mean-field distributions Q(Hlm), the 
mixing coefficients am, the smoothing distributions R(Hlm) and the variational parame­
ters Am' and we consider each of these in turn. 

We will assume that the choice of a single mean field distribution leads to a tractable lower 
bound, so that the equations 

8F[Q] 
8Q(h j ) = const (14) 

can be solved efficiently2. Since h(m, H) in (10) is linear in the marginals Q(hjlm), it 
follows that its derivative with respect to Q(hj 1m) is independent of Q(hjlm), although it 
will be a function of the other marginals, and so the optimization of (11) with respect to 
individual marginals again takes the form (14) and by assumption is therefore soluble. 

Next we consider the optimization with respect to the mixing coefficients am. Since all of 
the terms in (11) are linear in am, except for the entropy term, we can write 

F),[Qmix(H)] = I:am(-Em) - I:amlnam + 1 (15) 
m m 

2In standard mean field theory the constant would be zero, but for many models of interest the 
slightly more general equations given by (14) will again be soluble. 
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where we have used (10) and defined 

F[Q(Hlm)] + L Q(Hlm) InR(Hlm) 
{H} 

+ LAk LR(Hlk)Q(Hlm) +lnAm . 

k {H} 

(16) 

Maximizing (15) with respect to am, subject to the constraints 0 ~ am ~ 1 and Lm am = 
1, we see that the mixing coefficients which maximize the lower bound are given by the 
Boltzmann distribution 

exp(-Em) 
am = Lk exp(-Ek)' 

(17) 

We next maximize the bound (11) with respect to the smoothing marginals R(hj 1m). Some 
manipulation leads to the solution 

R(hilm) = amQA~ilm) [~>'~'Q(m'k)Q(hi'k)l-1 (18) 

in which 7r~,Q(m, k) denotes the expression defined in (12) but with the j term omitted 
from the product. 

The optimization of the JLmj takes the form of a re-estimation formula given by an extension 
of the result obtained for mean-field theory by Saul et al. (1996). For simplicity we omit 
the details here. 

Finally, we optimize the bound with respect to the Am, to give 

1 1 
~ = - L 7rR,Q(m, k). 

m am k 
(19) 

Since the various parameters are coupled, and we have optimized them individually keeping 
the remainder constant, it will be necessary to maximize the lower bound iteratively until 
some convergence criterion is satisfied. Having done this for a particular instantiation of 
the visible nodes, we can then determine the gradients of the bound with respect to the 
parameters governing the original belief network, and use these gradients for learning. 

3 Application to Sigmoid Belief Networks 

We illustrate the mixtures formalism by considering its application to sigmoid belief net­
works of the form (2). The components of the mixture distribution are given by factorized 
Bernoulli distributions of the form (3) with parameters JLmi. Again we have to introduce 
variational parameters ~mi for each component using (4). The parameters {JLmi, ~mi} are 
optimized along with {am, R(hjlm), Am} for each pattern in the training set. 

We first investigate the extent to which the use of a mixture distribution yields an improve­
ment in the lower bound on the log likelihood compared with standard mean field theory. 
To do this, we follow Saul et al. (1996) and consider layered networks having 2 units in 
the first layer, 4 units in the second layer and 6 units in the third layer, with full connec­
tivity between layers. In all cases the six final-layer units are considered to be visible and 
have their states clamped at zero. We generate 5000 networks with parameters {Jij, bi } 

chosen randomly with uniform distribution over (-1, 1). The number of hidden variable 
configurations is 26 = 64 and is sufficiently small that the true log likelihood can be com­
puted directly by summation over the hidden states. We can therefore compare the value of 
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the lower bound F with the true log likelihood L, using the nonnalized error (L - F)/ L. 
Figure 1 shows histograms of the relative log likelihood error for various numbers of mix­
ture components, together with the mean values taken from the histograms. These show 
a systematic improvement in the quality of the approximation as the number of mixture 
components is increased. 
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Figure 1: Plots of histograms of the normalized error between the true log likelihood and the lower 
bound. for various numbers of mixture components. Also shown is the mean values taken from the 
histograms. plotted against the number of components. 

Next we consider the impact of using mixture distributions on learning. To explore this 
we use a small-scale problem introduced by Hinton et al. (1995) involving binary images 
of size 4 x 4 in which each image contains either horizontal or vertical bars with equal 
probability, with each of the four possible locations for a bar occupied with probability 0.5. 
We trained networks having architecture 1-8-16 using distributions having between 1 and 
5 components. Randomly generated patterns were presented to the network for a total of 
500 presentations, and the J-tmi and ~mi were initialised from a unifonn distribution over 
(0,1). Again the networks are sufficiently small that the exact log likelihood for the trained 
models can be evaluated directly. A Hinton diagram of the hidden-to-output weights for the 
eight units in a network trained with 5 mixture components is shown in Figure 2. Figure 3 
shows a plot of the true log likelihood versus the number M of components in the mixture 
for a set of experiments in which, for each value of M, the model was trained 10 times 
starting from different random parameter initializations. These results indicate that, as the 
number of mixture components is increased, the learning algorithm is able to find a set 
of network parameters having a larger likelihood, and hence that the improved flexibility 
of the approximating distribution is indeed translated into an improved training algorithm. 
We are currently applying the mixture fonnalism to the large-scale problem of hand-written 
digit classification. 
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Figure 2: Hinton diagrams of the hidden-to-output weights for each of the 8 hidden units in a 
network trained on the 'bars' problem using a mixture distribution having 5 components. 
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Figure 3: True log likelihood (divided by the number of patterns) versus the number M of mixture 
components for the 'bars' problem indicating a systematic improvement in performance as M is 
increased. 

References 

Hinton, G. E., P. Dayan, B. 1. Frey, and R. M. Neal (1995). The wake-sleep algorithm 
for unsupervised neural networks. Science 268, 1158-1161. 

Jaakkola, T. (1997). Variational Methods for Inference and Estimation in Graphical 
Models. Ph.D. thesis , MIT. 

Jaakkola, T. and M. I. Jordan (1997). Approximating posteriors via mixture models. To 
appear in Proceedings NATO ASI Learning in Graphical Models, Ed. M. I. Jordan. 
Kluwer. 

Neal, R. (1992) . Connectionist learning of belief networks. Artificial Intelligence 56, 
71-113. 

Saul, L. K., T. Jaakkola, and M. I. Jordan (1996). Mean field theory for sigmoid belief 
networks. Journal of Artificial Intelligence Research 4,61-76. 

Saul, L. K. and M. I. Jordan (1996). Exploiting tractable substructures in intractable 
networks. In D. S. Touretzky, M . C. Mozer, and M. E. Hasselmo (Eds.), Advances in 
Neural Information Processing Systems, Volume 8, pp. 486-492. MIT Press. 


