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Abstract 

Filial imprinting in domestic chicks is of interest in psychology, biology, 
and computational modeling because it exemplifies simple, rapid, in­
nately programmed learning which is biased toward learning about some 
objects. Hom et al. have recently discovered a naive visual preference 
for heads and necks which develops over the course of the first three 
days of life. The neurological basis of this predisposition is almost en­
tirely unknown; that of imprinting-related learning is fairly clear. This 
project is the first model of the predisposition consistent with what is 
known about learning in imprinting. The model develops the predisposi­
tion appropriately, learns to "approach" a training object, and replicates 
one interaction between the two processes. Future work will replicate 
more interactions between imprinting and the predisposition in chicks, 
and analyze why the system works. 

1 Background 

Filial imprinting iIi domestic chicks is of interest in psychology, biology, and computational 
modeling (O'Reilly and Johnson, 1994; Bateson and Hom, 1994) because it exemplifies 
simple, rapid, innately programmed learning which is biased toward learning about some 
particular objects, and because it has a sensitive period in which learning is most efficient. 
Domestic chicks will imprint on almost anything (including boxes, chickens, and humans) 
which they see for enough time (Hom, 1985). Hom and his colleagues (Hom, 1985) have 
recently found a naive visual preference (predisposition) for heads and necks which devel­
ops over the course of the first three days of life. In particular, the birds prefer to approach 
objects shaped like heads and necks, even if they are the heads and necks of other species, 
including ducks and polecats (Hom, 1985). This preference interacts interestingly with fil­
ial imprinting, or learning to recognize a parent. Chicks can sti1llearn about (and imprint 
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on) other objects even in the presence of this predisposition, and the predisposition can 
override previously learned preferences (Johnson et aI., 1985), which is usually hard with 
imprinted chicks. These interactions are like other systems which rely on naive preferences 
and learning. 

While the neurological basis of imprinting is understood to some extent, that of the predis­
position for heads and necks is only beginning to be investigated. Imprinting learning is 
known to take place in IMHY (intermediate and medial portions of the hyperstriatum ven­
trale) (Hom, 1985), and to rely on noradrenaline (Davies et ai., 1992). The predisposition's 
location is currently unknown, but its strength correlates with plasma testosterone levels 
(Hom, 1985). 

1.1 Previous Models 

No previous models of imprinting have incorporated the predisposition in any meaningful 
way. O'Reilly & Johnson's (1994) model focussed on accounting for the sensitive period 
via an interaction between hysteresis (slow decay of activation) and a Hebbian learning rule, 
and ignored the predisposition. The only model which did try to include a predisposition 
(Bateson and Hom, 1994) was a 3-layer Hebbian network with real-valued input vectors, 
and outputs which represented the strength of an "approach" behavior. Bateson and Hom 
(1994) found a "predisposition" in their model by comparing networks trained on input 
vectors of Os and Is (High) to vectors where non-zero entries were 0.6 (Low). Untrained 
networks preferred (produced a higher output value for) the high-valued input ("hen"), 
and trained networks preferred the stimulus they were trained on ("box"). Of course, in a 
network with identical weights, an input with higher input values will naturally excite an 
output unit more than one with lower input values. Thus, this model's predisposition is 
implicit in the input values, and is therefore hard to apply to chicks. 

In this project, I develop a model which incorporates both the predisposition and imprint­
ing, and which is as consistent as possible with the known neurobiology. The overall goals 
of the project are to clarify how this predisposition might be implemented, and to exam­
ine more generally the kinds of representations that underlie naive preferences that interact 
with and facilitate, rather than replace, learning. These particular simulations show that 
the model exhibits the same qualitative behavior as chicks under three important sets of 
conditions. 

The rest of the paper first describes the architecture of the current model (in general terms 
and then in more detail). It goes on to describe the particular simulations, and then com­
pares the results of those simulations with the data gathered from chicks. 

2 Architecture 

The neural network model's architecture is shown in Figure 1. The input layer is a 6x6 
pixel "retina" to which binary pictures are presented. The next layer is a feature detector. 
The predisposition serves as the home of the network's naive preference, while the IMLL 
(intermediate learning layer) is intended to correspond to a chick's IMHY, and is where the 
network stores its learned representations. The output layer consists of two units which are 
taken to represent different action patterns (following Bateson and Hom (1994): an "ap­
proach" unit and a "withdraw" unit. These are the two chick behaviors which researchers 
use to assess a chick's degree of preference for a particular stimulus. The feature detec­
tor provides input to the predisposition and IMLL layers; they in tum provide input to the 
output layer. Where there are connections, layers (and subparts) are fully interconnected. 

The feature detector uses a linear activation function; the rest of the network has a hyper­
bolic tangent activation function. All activations and all connections can be either positive 
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Figure 1: The network architec­
ture sketched. All connections 
are feedforward (from input to­
ward output) only. 
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Figure 2: The three input patterns used by the 
network. They have between 16 and 18 pixels 
each, and the central moment of each image 
is the same. 

or negative; the connections are limited to ±0.9. Most of the learning takes place via a 
covariant Hebb rule, because it is considered to be plausible neurally. 

The lowest level ofthe network is a feature-detecting preprocessor. The current implemen­
tation of this network takes crude 6x6 binary pictures (examples of which can be seen in 
Fig. 2), and produces a IS-place floating-point vector. The output units of the feature de­
tector are clustered into five groups of three units each; each group of three units operates 
under a winner-take-all rule, in order to increase the difference between preprocessed pat­
terns for the relevant pictures. The feature detector was trained on random inputs for 400 
cycles with a learning rate of .01, and its weights were then frozen. Training on random 
input was motivated by the finding that the lower levels of the visual system require some 
kind of input in order to organize; Miller et al. (1989) suggest that, at least in cats, the 
random firing of retinal neurons is sufficient. 

The predisposition layer was trained via backprop using the outputs of the feature detector 
as its inputs. The pattern produced by the "head-neck" picture in the feature detector was 
trained to excite the "approach" output unit and inhibit the "withdraw" unit; other patterns 
were trained to a neutral value on both output units. These weights were stored, and treated 
as fixed in the larger network. (In fact, these weights were scaled down by a constant 
factor (.8) before being used in the larger network.) Since this is a naive preference, or 
predisposition, these weights are assumed to be fixed evolutionarily. Thus, the method of 
setting them is irrelevant; they could also have been found by a genetic algorithm. 

The IMLL layer is a winner-take-all network of three units. Its connections with the feature 
detector's outputs are learned by a Hebb rule with learning rate .01 and a weight decay (to 
0) term of .0005. For these simulations, its initial weights were fixed by hand, in a pattern 
which insured that each IMLL unit received a substantially different value for the same 
input pattern. This pattern of initial weights also increased the likelihood that the three 
patterns of interest in the simulations maximally affected different IMLL units. 

As previously mentioned, the output layer consists of an "approach" and a "withdraw" 
unit. It also learns via a Hebb rule, with the same learning rate and decay term as IMLL. 
Its connections with IMLL are learned; those with the predisposition layer are fixed. Initial 
weights between IMLL and the output layer are random, and vary from -0.3 to 0.3. The 
bias to the approach unit is 0; that to the withdraw unit is 0.05. 
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2.1 Training 

In the animal experiments on which this model is based, chicks are kept in the dark (and in 
isolation) except for training and testing periods. Training periods involve visual exposure 
to an object (usually a red box); testing involves allowing the chick to choose between 
approaching the training object and some other object (usually either a stuffed hen or a blue 
cylinder) (Hom, 1985). The percentage of time the chick approaches the training object (or 
other object of interest) is its preference score for that object (Hom, 1985). A preference 
score of 50% indicates indifference; scores above 50% indicate a preference for the target 
object, and those below indicate a preference for the other object. For the purposes of 
modeling, the most relevant information is the change (particularly the direction of change) 
in the preference score between two conditions. 

Following this approach, the simulations use three preset pictures. One, a box, is the only 
one for which weights are changed; it is the training pattern. The other two pictures are 
test patterns; when they are shown, the network's weights are not altered. One of these 
test patterns is the head/neck picture on which the predisposition network was trained; the 
other is a cylinder. As with chicks, the behavioral measure is the preference score. For the 
network, this is calculated as pref. score = 100 x at / (at + ac ), where at is the activation 
of the approach unit when the network is presented with the training (or target) picture, and 
ac is the activation of the approach unit given the comparison picture. It is assumed that 
both values are positive; otherwise. the approach unit is taken to be off. 

In these simulations, the network gets the training pattern (a "box") during training periods, 
and random input patterns (simulating the random firing of retinal neurons) otherwise. 
The onset of the predisposition is modeled by allowing the predisposition layer to help 
activate the outputs only after the network receives an "experience" signal. This signal 
models the sharp rise in plasma testosterone levels in dark-reared chicks following any 
sort of handling (Hom, 1985). Once the network has received the "experience" signal, the 
weights are modified for random input as well as for the box picture. Until then, weights 
are modified only for the box picture. Real chicks can be tested only once because of the 
danger of one-trial learning, so all chick data compares the behavior of groups of chicks 
under different conditions. The network's weights can be kept constant during testing, and 
the same network's responses can be measured before and after it is exposed to the relevant 
condition. All simulations were 100 iterations long. 

3 Simulations 

The simulations using this model currently address three phenomena which have been stud­
ied in chicks. First, in simple imprinting chicks learn to recognize a training object, and 
usually withdraw from other objects once they have imprinted on the training object. This 
simulation requires simply exposing the network to the training object and measuring its 
responses. The model "imprints" on the box if its preference for the box relative to both 
the head/neck and cylinder pictures increases during training. Ideally, the value of the ap­
proach unit for the cylinder and box will also decrease, to indicate the network's tendency 
to withdraw from "unfamiliar" stimuli. 

Second, chicks with only the most minimal experience (such as being placed in a dark 
running wheel) develop a preference for a stuffed fowl over other stimuli. That is, they will 
approach the fowl significantly more than another object (Hom, 1985). This is modeled 
by turning on the "predisposition" and allowing the network to develop with no training 
whatsoever. The network mimics chick behavior if the preference score for the head/neck 
picture increases relative to the box and the cylinder pictures. 

Third, after the predisposition has been allowed to develop, training on a red box decreases 
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Figure 3: A summary of the results of the model. All bars are differences in preference 
scores between conditions for chicks (open bars) and the model (striped bars). a: Imprinting 
(change in preference for training object): trained - untrained. b: Predisposition (change 
in preference for fowl): experience - no experience (predisposition - no predisposition). 
c: Change in preference for fowl vs. box: trained - predisposition only. d: Change in 
preference for box vs. cylinder: trained - predisposition only. (Chick data adapted from 
(Hom, 1985; Bolhuis et aI., 1989).) 

a chick's preference for the fowl relative to the box. It also increases the chick's preference 
for the box relative to a blue cylinder or other unfamiliar object (Bolhuis et aI., 1989). In 
the model, the predisposition layer is allowed to activate the output layer for 20 iterations 
before training starts. Then the model is exposed to the network for 25 iterations. If its 
preference score for the fowl decreases after training, the network has shown the same 
pattern as chicks. 

4 Results and Discussion 

A summary of the results is shown in Figure 3. Since these simulations try to capture 
the qualitative behavior of chicks, all results are shown as the change in preference scores 
between two conditions. For the chick data, the changes are approximate, and calculated 
from the means only. The network data is the average of the results for 10 networks, each 
with a different random seed (and therefore initial weight patterns). For the three conditions 
tested, the model's preference scores moved in the same direction as the chicks. 

The interaction between imprinting and the predisposition cannot be investigated compu­
tationally unless the model displays both behaviors. These baseline behaviors are shown 
in Fig. 3-a and b. Trained chicks prefer the training object more after training than before 
(Hom, 1985); so does the model (Fig. 3-a). In the case of the predisposition (Fig. 3-b), 
the bird data is a difference between preferences for a stuffed fowl in chicks which had 
developed the predisposition (and therefore preferred the fowl) and those which had not 
(and therefore did not). Similarly, the network preferred the head/neck picture more after 
the predisposition had been allowed to develop than at the beginning of the simulation. 

The interactions between imprinting and the predisposition are the real measures of the 
model's success. In Fig. 3-c, the predisposition has been allowed to develop before training 
begins. Trained birds with the predisposition were compared with untrained birds also 
with the predisposition (trained - untrained). Trained birds preferred the stuffed fowl less 
than their untrained counterparts (Bolhuis et aI., 1989). The network's preference score 
just before training is subtracted from its score after training. As with the real chicks, 
the network prefers the head/neck picture less after training than it did before. Fig. 3-d 
shows that, as with chicks, the network's preference for the box increased relative to that 
for the cylinder during the course of training. For these three conditions, then, the model is 
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qualitatively a success. 

4.1 Discussion of Basic Results 

The point of network models is that their behavior can be analyzed and understood morc 
easily than animals'. The predisposition's behavior is quite simple: to the extent that a 
random input pattern is similar to the head/neck picture, it activates the predisposition 
layer, and through it the approach unit. Thus the winning unit in IMLL is correlated with 
the approach unit, and the connections are strengthened by the Hebb rule. Imprinting is 
similar, but only goes through the IMLL layer, so the approach unit may not be on. In 
both cases, the weights from the other units decay slowly during training, so that usually 
the other input patterns fail to excite the approach unit, and even excite the withdraw unit 
slightly because of its small positive bias. Only one process is required to obtain both the 
predisposition and imprinting, since both build representations in IMLL. 

The interaction between imprinting and the predisposition first increases the preference for 
the predisposition, and then alters the weights affecting the reaction to the box picture. The 
training phase acts just like the ordinary imprinting phase, so that preference for both the 
head/neck and the cylinder decrease during training. 

Some exploration of the relevant parameters suggests that the predisposition's behavior 
does not depend simply on its strength. Because IMLL is a winner-take-alliayer, chang­
ing the predisposition's strength can, by moving the winning node around during training, 
cause previous learning to be lost. Such motion obviously has a large effect on the outcome 
of the simulation. 

4.2 Temporal aspects of imprinting 

The primary weakness of the model is its failure to account for some critical temporal 
aspects of imprinting. It is premature to draw many conclusions about chicks from this 
model, because it fails to account for either long-term sensitive periods or the short-term 
time course of the predisposition. 

Neither the predisposition nor imprinting in the model have yet been shown to have sen­
sitive periods, though both do in real birds (Hom, 1985; Johnson et aI., 1985). Prelimi­
nary results, however, suggest that imprinting in the networks does have a sensitive period, 
presumably because of weight saturation during learning. It is not yet clear whether the 
predisposition's sensitive period will require an exogenous process. 

Second, the model does not yet show the appropriate time course for the development of 
the predisposition. In chicks, the predisposition develops fairly slowly over the course of 
five or so hours (Johnson et al., 1985). In chicks for which the first experience is training, 
the predisposition's effect is to increase the bird's preference for the fowl regardless of 
training object, over the course of the hours following training (Johnson et aI., 1985). In the 
model, the predisposition appears quickly and, because of weight decay and other factors, 
the strength of the predisposition slowly decreases over the iterations following training, 
rather than increasing. Increasing the learning rate of IMLL over time could solve this 
problem. Once it exhibits time course behaviors, especially if no further processes need to 
be postulated, the model will facilitate interesting analyses of how a simple set of processes 
and assumptions can interact to produce highly complicated behavior. 

5 Conclusion 

This model displays some important interactions between learning and a predisposition in 
filial imprinting. It is the first which accounts for the predisposition at all. Other models 
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of imprinting have either ignored the issue or built in the predisposition by hand. In this 
model, the interaction between two simple systems, a fixed predisposition and a learned 
approach system, gives rise to one important more complex behavior. In addition, the 
two representations of the head/neck predisposition can account for lesion studies in which 
lesioning IMLL removes a chick's memory of its training object or prevents it from learning 
anything new about specific objects, but leaves the preference for heads and necks intact 
(Hom, 1985). Clearly, if the IMLL layer is missing, the network loses any infonnation it 
might have learned about training objects, and is unable to learn anything new from future 
training. The predisposition, however, is still intact and able to influence the network's 
behavior. 

The nature of predispositions like chicks' naive preference for heads and necks, and how 
they interact with learning, are interesting in a number of fields. Morton and Johnson 
(1991) have already explored the similarities between chicks' preferences for heads and 
necks and human infants' preferences for human faces. Such naive preferences are also 
important in any discussion of innate infonnation, and the number of processes needed 
to handle innate and learned infonnation. Although this model and its successors cannot 
directly address these issues, I hope that their explication of how fairly general predis­
positions can influence learning will improve understanding of some of the mechanisms 
underlying them. 
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