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Abstract 

We present a study which is concerned with word recognition rates for 
heavily degraded documents. We compare human with machine read­
ing capabilities in a series of experiments, which explores the interaction 
of word/non-word recognition, word frequency and legality of non-words 
with degradation level. We also study the influence of character segmen­
tation, and compare human performance with that of our artificial neural 
network model for reading. We found that the proposed computer model 
uses word context as efficiently as humans, but performs slightly worse 
on the pure character recognition task. 

1 Introduction 

Optical Character Recognition (OCR) of machine-print document images ·has matured 
considerably during the last decade. Recognition rates as high as 99.5% have been re­
ported on good quality documents. However, for lower image resolutions (200 Dpl and 
below), noisy images, images with blur or skew, the recognition rate declines consider­
ably. In bad quality documents, character segmentation is as big a problem as the actual 
character recognition. fu many cases, characters tend either to merge with neighbouring 
characters (dark documents) or to break into several pieces (light documents) or both. We 
have developed a reading system based on a combination of neural networks and hidden 
Markov models (HMM), specifically for low resolution and degraded documents. 

To assess the limits of the system and to see where possible improvements are still to be 
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expected, an obvious comparison is between its performance and that of the best reading 
system known, the human reader. It has been argued, that humans use an extremely 
wide range of context information, such as current topics, syntax and semantic analysis in 
addition to simple lexical knowledge during reading. Such higher level context is very hard 
to model and we decided to run a. first comparison on a word recognition task, excluding 
any context beyond word knowledge. 

The main questions asked for this study are: how does human performance compare with 
our system when it comes to pure character recognition (no context at all) of bad quality 
documents? How do they compare when word context can be used? Does character 
segmentation information help in reading? 

2 Data Preparation 

We created as stimuli 36 data sets, each containing 144 character strings, 72 words and 
72 non-words, all lower case. The data sets were generated from 6 original sets, each 
COI!taining 144 unique wordsjnon-words. For each original set we used three ways to 
divide the words into the different degradation levels such that each word appears once in 
each degradation level. We also had two ways to pick segmented/non-segmented so that 
each word is presented once segmented and once non-segmented. This counterbalancing 
creates the 36 sets out of the six original ones. The order of presentation within a test set 
was randomized with respect to degradation, segmentation and lexical status. 

All character strings were printed in 'times roman 10 pt' font. Degradation was achieved 
by photocopying and faxing the printed docJiment before scanning it at 200Dpl. Care was 
taken to randomize the print position of the words such that as few systematic degradation 
differences as possible were introduced. 

Words were picked from a dictionary of the 44,000 most frequent words in the 'Sydney 
Morning Herald'. The length of the words was restricted to be between 5 and 9 characters. 
They were divided in a 3x3x2 mixed factorial model containing 3 word-frequency groups, 
3 stimulus degradation levels and visually segmented/non-segmented words. The three 
word-frequency groups were: 1 to 10 occurences/million (o/m) as low frequency, 11 to 
40 ojm as medium frequency and 41 or more ojm as high frequency. Each participant 
was presented with four examples per stimulus class (e.g. four high frequency words in 
medium degradation level, not segmented). 

The non-words conformed to a 2x3x2 model containing legal/illegal non-words, 3 stimulus 
degradation levels and visually segmented/non-segmented strings. The illegal non-words 
(e.g. 'ptvca') were generated by randomly selecting a word length between 5 and 9 char­
acters (using the same word length frequencies as the dictionary has) and then randomly 
picking characters (using the same character frequencies as the dictionary has) and keep­
ing the unpronouncable sequences. The legal non-words (e.g. 'slunk') were generated by 
using trigrams (using the dictionary to compute the trigram probabilities) and keeping 
pronouncable sequences. Six examples per non-word stimulus class were used in each test 
set. (e.g. six illegal non-words in high degradaton level, segmented). 

3 Human Reading 

There were 36 participants in the study. Participants were students and staff of the 
University of Sydney, recruited by advertisement and paid for their service. They were 
all native English speakers, aged between 19 and 52 with no reported uncorrected visual 
deficits. 

The participants viewed the images, one at a time, on a computer monitor and were asked 
to type in the character string they thought would best fit the image. They had been 
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instructed that half of the character strings were English words and half non-words, and 
they were informed about the degradation levels and the segmentation hints. Participants 
were asked to be as fast and as accurate as possible. After an initial training session of 30 
randomly picked character strings not from an independent training set, the participants 
had a short break and were then presented with the test set, one string at a time. After a 
Carriage Return was typed, time was recorded and the next word was displayed. Training 
and testing took about one hour. The words were about 1-1.5cm large on the screen and 
viewed at a distance of 60cm, which corresponds to a viewing angle of 1°. 

4 Machine Reading 

For the machine reading tests, we used our integrated segmentation/recognition system, 
using a sliding window technique with a combination of a neural network and an HMM [6). 
In the following we describe the basic workings without going into too much detail on the 
specific algorithms. For more detailed description see (6]. 

A sliding window approach to word recognition performs no segmentation on the input 
data of the recognizer. It consists basically of sweeping a window over the input word in 
small steps. At each step the window is taken to be a tentative character and corresponding 
character class scores are produced. Segmentation and recognition decisions are then made 
on the basis of the sequence of character scores produced, possibly taking contextual 
information into account. 

In the preprocessing stage we normalize the word to a fixed height. The result is a 
grey-normalized pixel map of the word. This pixel map is the input to a neural network 
which estimates a posteriori probabilities of occurrence for each character given the input 
in the sliding window whose length corresponds approximately to two characters. We use 
a space displacement neural network (SDNN) which is a multi-layer feed-forward network 
with local connections and shared weights, the layers of which perform successively higher­
level feature extraction. SDNN's are derived from Time Delay Neural Networks which have 
been successfully used in speech recognition (2] and handwriting recognition (4, 1]. Thanks 
to its convolutional structure the computational complexity of the sliding window approach 
is kept tractable. Only about one eighth of the network connections are reevaluated for 
each new input window. The outputs of the SDNN are processed by an HMM. In our 
case the HMM implements character duration models. It tries to align the best scores of 
the SDNN with the corresponding expected character durations. The Viterbi algorithm is 
used for this alignment, determining simultaneously the segmentation and the recognition 
of the word. Finding this state sequence is equivalent to finding the most probable path 
through the graph which represents the HMM. Normally additive costs are used instead of 
multiplicative probabilities. The HMM then selects the word causing the smallest costs. 

Our best architecture contains 4 convolutional layers with a total of 50,000 parameters (6]. 
The training set consisted of a subset of 180,000 characters from the SEDAL database, a 
low resuloution degraded document database which was collected earlier and is indepen­
dent of any data used in this experiment. 

4.1 The Dictionary. Model 

A natural way of including a dictionary in this process, is to restrict the solution space 
of the HMM to words given by the dictionary. Unfortunately this means calculating the 
cost for each word in the dictionary, which becomes prohibitively slow with increasing 
dictionary size (we use a combination of available dictionaries, with a total size of 98,000 
words). We thus chose a two step process for the dictionary search: in a first step a list of 
the most probable words is generated, using a fast-matcher technique. In the second step 
the HMM costs are calculated for the words in the proposed list. 
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To generate the word list, we take the character string as found by the HMM without the 
dictionary and calculate the edit-distance between that string and all the words in the 
dictionary. The edit-distance measues how many edit operations (insertion, deletion and 
substitution) are necessary to convert a given input string into a target word [3, 5]. We 
now select all dictionary words that have the smallest edit-distance to the string recognized 
without using the dictionary. The composed word list contains on average 10 words, and 
its length varies considerably depending on the quality of the initial string. 

For all words in the word list the HMM cost is now calculated and the word with the 
smallest cost is the proposed dictionary word. As the calculation of the edit-distance is 
much faster than the calculation of the HMM costs, the recognition speed is increased 
substantially. 

In a last step the difference in cost between the proposed dictionary word and the initial 
string is calculated. If this difference is smaller than a threshold, the system will return the 
dictionary word, otherwise the original string is returned. This allows for the recognition 
of non-dictionary words. The value for the threshold determines the amount of reliance 
on the dictionary. A high value will correct most words but will also force non-words to 
be recognized as words. A low value, on the other hand, leaves the non-words unchanged 
but doesn't help for words either. Thus the value of the threshold influences the difference 
between word and non-word recognition. We chose the value such that the over-all error 
rate is optimized. 

4.2 The Case of Segmented data 

When character segmentation is given, we know how many characters we have and where 
to look for them. There is no need for an HMM and we just sum up the character 
probabilities over the x-coordinate in the region corresponding to a segment. This leaves 
a vector of 26 scores {the whole alphabet) for each character in the input string. With no 
dictionary constraints, we simply pick the label corresponding to the highest probability 
for each character. The dictionary is used in the same way, replacing the HMM scores by 
calculating the word scores directly from the corresponding character probabilities. 

5 Results 

Recognition Performance 
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Figure 1: Human Reading Perfor­
mance. 
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Figure 2: Machine Reading Perfor­
mance. 
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Figure 1 depicts the recognition results for human readers. All results are per character 
error rates counted by the edit-distance. All results reported as significant pass an F -test 
with p < .01. As expected there was a significant interaction between error rate and 
degradation and clearly non-words have higher error rates than words. Also character 
segmentation has also an influence on the error rate. Segmentation seems to help slightly 
more for higher degradations. 

Figure 2 shows performance of the machine algorithm. Again greater degradation leads 
to higher error rates and non-words have higher error rates than words. Segmentation 
hints lead to significantly better recognition for all degradation levels; in fact there is no 
interaction between degradation and segmentation for the machine algorithm. In general 
the machine benefited more from segmentation than humans. 

One would expect a smaller gain from lexical knowledge for higher en;or rates (i.e. higher 
degradation) as in the limit of complete degradation all error rates will be 100%. Both 
humans and machine show this 'closing of the gap . 

Segmented Recognition 

0.6 -Human 

- - - • Mac;binc 

0.1 Words 

o~------------~2------------~3~ 

Degradation 

Figure 3: Segmented Data. 

Non-Segmented Recognition 

0.6 -Human 

o~------------~2------------~3~ 

Degradation 

Figure 4: Non-Segmented Data. 

More interesting is the direct comparison between the error rates for humans and machine 
as shown in figure 3 and figure 4. The difference for non-words reflects the difference in 
ability to recognize the geometrical shape of characters without context. For degradation 
levels 1 and 2, the machine has the same reading abilities as humans for segmented data 
and looses only about 7% in the non-'segmented case. For degradation level 3; the machine 
clearly performs worse than human readers. 

The difference between word and non-word error rates reflects the ability of the participant 
to use lexical knowledge. Note that the task contains word/non-word discrimination as 
well as recognition. It is striking how similar the behaviour for humans and machine is 
for degradation levels 1 and 2. 

Timing Results 

Figure 5 shows the word entry times for humans. As the main goal was to compare 
recognition rates, we did not emphasize entry speed when instructing the participants. 
However, we recorded the word entry time for each word (which includes inspection time 
and typing). When analysing the timimg data the only interest was in relative difference 
between word groups. Times were therefore· converted for each participant into a z-score 
(zero mean with a standard deviation of one) and statistics were made over the z-scores 
of all participants. 

Non-words generally took longer to recognize than words and segmented data took longer 



Comparison of Human and Machine Woni Recognition 

Humau Reading Times 
o.s,..-------,---------.--, 

·----
-------0 ___ .. 

----
-------====---------------x 

-{).S'-:-1 ------2:-------~3--l 

Desradation 

Figure 5: Human Reading Times. 

Non-Segmented 
0.5,..-------,.--------~ 

-Human 

---- -· ;..., 0.3 

~ --------------=~~~= 
--

.!:!. 0 I 
~ . 

b 
Jj -{).I 

"E 
~ 

-{)3 

-{).S'-;-------2:-------~3:-' 

Degradation 

Figure 6: Non-Segmented Reading 
Times. 

99 

to recognize than non-segmented for humans which we believe stems from participants not 
being used to reading segmented data. When asked, participants reported difficulties in 
using the segmentation lines. Interestingly this segmentation effect is significant only for 
words but not for non-words. 

As predicted there is also an interaction between time and degradation. Greater degra­
dations take longer to recognize. Again, the degradation effect for time is only significant 
for words but barely for non-words. 

Our machine reading algorithm behaves differently in segmented and non-segmented mode 
with respect to time consumption. In segmented mode, the time for evaluating the word 
list in our system is very short compared to the base recognition time, as there is no 
HMM involved. Accordingly we found no or very little effects on timing for our system for 
segmented data. All the timing information for the machine refer to the non-segmented 
case (see Figure 6). 

Frequency and Legality 

Table 5 shows word frequencies, legality of non-words and entry-time. Our experiment 
confirmed the well known frequency and legality effect for humans in recognition rate as 
well as time and respectively for frequency. The only exception is that there is no difference 
in error rate for middle and low frequency words. 

The machine shows (understandably) no frequency effect in error rate or time, as all 
lexical words had the same prior probability. Interestingly even when using the correct 
prior probabilities we could not produce a strong word frequency· effect for the machine. 
Also no legality effect was observed for the error rate. One way to incorporate legality 
effects would be the use of Markov chains such as n-grams. 

Note however, how the recognition time for non-words is higher than for words and the 
legality effect for the recognition time. Recognition times for our system in non-segmented 
mode depend mainly on the time it takes to evaluate the word list. Non-words generally 
produce longer word lists than words, because there are no good quality matches for a 
non-word in the dictionary (on average a word list length of 8.6 words was found for words 
and of 14.5 for non-words). Also illegal non-words produce longer word lists than legal 
ones, again because the match quality for illegal non-words is worse than for legal ones 
(average length for illegal non-words 15.9 and for legal non-words 13.2). The z-scores for 
the word list length parallel nicely the recognition time scores. 

In segmented mode, the time for evaluating the word list is very short compared to the 
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base recognition time, as there is no HMM involved. Accordingly we found no or very 
little effects on timing for our system in the segmented case. 

Error l%J Humans Machine 
Error z-Time Error z-Time 

Words 41+ 0.22 -0.37 0.36 -0.14 
Words 11-40 0.27 -0.13 0.34 -0.19 
Words 1-10 0.26 -0.06 0.33 -0.22 
Legal Non-W. 0.36 0.07 0.47 0.09 
lllegal Non-W. 0.46 0.31 0.49 0.28 

Table 1: Human and Machine Error rates for the different word and non-word 
classes. The z-times for the machine are for the non-segmented data only. 

6 Discussion 

. The ability to recognize the geometrical shape of characters without the possibility to use 
any sort of context information is reflected in the error rate of illegal non-words. The 
difference between the error rate for illegal non-words and the one for words reflects the 
ability to use lexical knowledge. To our surprise the behavior of humans and machine 
is very similar for both tasks, indicating a near to optimal machine recognition system. 
Clearly this does not mean our system is a good model for human reading. Many effects 
such as semantic and repetition priming are not reproduced and call for a system which 
is able to build semantic classes and memorize the stimuli presented. Nevertheless, we 
believe that our experiment validates empirically the verification model we implemented, 
using real world data. 
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