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Abstract 
Some learning techniques for classification tasks work indirectly, by first trying 
to fit a full probabilistic model to the observed data. Whether this is a good idea 
or not depends on the robustness with respect to deviations from the postulated 
model. We study this question experimentally in a restricted, yet non-trivial and 
interesting case: we consider a conditionally independent attribute (CIA) model 
which postulates a single binary-valued hidden variable z on which all other 
attributes (i.e., the target and the observables) depend. In this model, finding the 
most likely value of anyone variable (given known values for the others) reduces 
to testing a linear function of the observed values. 

We learn CIA with two techniques: the standard EM algorithm, and a new 
algorithm we develop based on covariances. We compare these, in a controlled 
fashion, against an algorithm (a version of Winnow) that attempts to find a good 
linear classifier directly. Our conclusions help delimit the fragility of using the 
CIA model for classification: once the data departs from this model, performance 
quickly degrades and drops below that of the directly-learned linear classifier. 

1 Introduction 
We consider the classic task of predicting a binary (0/1) target variable zo, based on 
the values of some n other binary variables ZI ••• Zft,. We can distinguish between two 
styles of learning approach for such tasks. Parametric algorithms postulate some form of 
probabilistic model underlying the data, and try to fit the model's parameters. To classify an 
example we can compute the conditional probability distribution for Zo given the values of 
the known variables, and then predict the most probable value. Non-parametric algorithms 
do not assume that the training data has a particular form. They instead search directly in 
the space of possible classification functions, attempting to find one with small error on the 
training set of examples. 

An important advantage of parametric approaches is that the induced model can be used to 
support a wide range of inferences, aside from the specified classification task. On the other 
hand, to postulate a particular form of probabilistic model can be a very strong assumption. 

"Partly supported by ONR grant NOOOI4-96-1-0550 while visiting Harvard University. 
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So it is important to understand how robust such methods are when the real world deviates 
from the assumed model. 

In this paper, we report on some experiments that test this issue. We consider the specific 
case of n + 1 conditionally independent attributes Zi together with a single unobserved 
variable z, also assumed to be binary valued, on which the Zi depend (henceforth, the 
binary CIA model); see Section 2. In fact, such models are plausible in many domains 
(for instance, in some language interpretation tasks; see [GR96]). We fit the parameters of 
the CIA model using the well-known expectation-maximization (EM) technique [DLR77], 
and also with a new algorithm we have developed based on estimating covariances; see 
Section 4. In the nonparametric case, we simply search for a good linear separator. This is 
because the optimal predictors for the binary CIA model (i.e., for predicting one variable 
given known values for the rest) are also linear. This means that our comparison is "fair" 
in the sense that neither strategy can choose from classifiers with more expressive power 
than the other. As a representative of the non-parametric class of algorithms, we use the 
Winnow algorithm of [Lit881, with some modifications (see Section 6). Winnow works 
directly to find a "good" linear separator. It is guaranteed to find a perfect separator if one 
exists, and empirically seems to be fairly successful even when there is no perfect separator 
[GR96, Blu9?]. It is also very fast. 

Our experimental methodology is to first generate synthetic data from a true CIA model 
and test performance; we then study various deviations from the model. There are various 
interesting issues involved in constructing good experiments, including the desirability of 
controlling the inherent "difficulty" of learning a model. Since we cannot characterize the 
entire space, we consider here only deviations in which the data is drawn from a CIA model 
in which the hidden variable can take more than two values. (Note that the optimal classifier 
given Zo is generally not linear in this case.) 

Our observations are not qualitatively surprising. CIA does well when the assumed model 
is correct, but performance degrades when the world departs from the model. But as we 
discuss, we found it surprising how fragile this model can sometimes be, when compared 
against algorithms such as Winnow. This is even though the data is not linearly separable 
either, and so one might expect the direct learning techniques to degrade in performance as 
well. But it seems that Wmnow and related approaches are far less fragile. Thus the main 
contribution of this work is that our results shed light on the specific tradeoff between fitting 
parameters to a probabilistic model, versus direct search for a good classifier. Specifically, 
they illustrate the dangers of predicting using a model that is even "slightly" simpler than 
the distribution actually generating the data, vs. the relative robustness of directly searching 
for a good predictor. This would seem to be an important practical issue, and highlights the 
need for some better theoretical understanding of the notion of "robustness". 

2 Conditionally Independent Attributes 

Throughout we assume that each example is a binary vector z E {O, 1 }n+l, and that each 
example is generated independently at random according to some unknown distribution on 
{O, 1 }n+l. We use Xi to denote the i'th attribute, considered as a random variable, and Zi 

to denote a value for Xi. In the conditionally independent attribute (CIA) model, examples 
are generated as follows. We postulate a "hidden" variable Z with Ie values, which takes 
values z for 0 $ z < Ie with probability a. ~ O. Since we must have E::~ a. = 1 
there are Ie - 1 independent parameters. Having randomly chosen a value z for the hidden 
variable, we choose the value Zi for each observable Xi: the value is 1 with probability 
p~.}, and 0 otherwise. Here p~.} E [0,1). The attributes' values are chosen independently 
of each other, although z remains fixed. Note that there are thus (n + 1)1e probability 

parameters p~.). In the following, let l' denote the set of all (n + 1)1e + Ie - 1 parameters 
in the model. From this point, and until Section 7, we always assume that Ie = 2 and in this 
case, to simplify notation, we write al as a, ao (= 1 - a) as ai, p! as Pi and p~ as qi. 
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3 The Expectation-Maximization algorithm (EM) 

One traditional unsupervised approach to learning the parameters of this model is to find 
the maximum-likelihood parameters of the distribution given the data. That is, we attempt 
to find the set of parameters that maximizes the probability of the data observed. 

Finding the maximum likelihood parameterization analytically appears to be a difficult 
problem, even in this rather simple setting. However, a practical approach is to use the well­
known Expectation-Maximization algorithm (EM) [DLR77], which is an iterative approach 
that always converges to a local maximum of the likelihood function. In our setting, the 
procedure is as follows. We simply begin with a randomly chosen parameterization p, and 
then we iterate until (apparent) convergence: 1 

Expectation: For all zi, compute Ui = p-p(zi 1\ Z = 1) and Vi = p-p(zi 1\ Z = 0). 

Maximization: Reestimate P as follows (writing U = Ei Ui and V = Ei Vi): 

a f- E:=I Ui/(U + V) P; f- E{i::i~=I} u;./U qj f- E{i::i~=I} Vi/V. 
After convergence has been detected all we kno'w is that we are near a [ocdi minima of the 
likelihood function. Thus it is prudent to repeat the process with many different restarts. 
(All our experiments were extremely conservative concerning the stopping criteria at each 
iteration, and in the number of iterations we tried.) But in practice, we are never sure that 
the true optimum has been located. 

4 Covariances-Based approach 
Partly in response to concern just expressed, we also developed another heuristic technique 
for learning P. The algorithm, which we call COY, is based on measuring the covariance 
between pairs of attributes. Since we do not see Z, attributes will appear to be correlated. In 
fact, if the CIA model is correct, it is easy to show that covariance between Xi and X j (de­
fined as Yi,; = ~,; - ~I-'; where~, 1-';, ~,; are the expectations of Xi, Xj, (Xi and Xj), 
respectively), will be Yi,j = aa'did; where di denotes Pi - qi. We also know that the 
expected value of Xi is ~ = aPi + a'qi. Furthermore, we will be able to get very accurate 
estimates of ~ just by observing the proportion of samples in which Zi is 1. Thus, if we 
could estimate both a and di it would be trivial to solve for estimates of Pi and qi. 
To estimate di, suppose we have computed all the pairwise covariances using the data; 
we use fli,; to denote our estimate of Yi,j' For any distinct j, Ie i= i we clearly have 
aa l 5; = IV'rd.r"/o1 so we could estimate d; using this equation. A better estimate would be 

"/o 
to consider all pairs j, Ie and average the individual estimates. However, not all individual 
estimates are equally good. It can be shown that the smaller Y;,II is, the less reliable 
we should expect the estimate to be (and in the limit, where X; and XII are perfectly 
uncorrelated, we get no valid estimate at all). This suggests that we use a weighted average, 
with the weights proportional to Yj,II. Using these weights leads us to the next equation for 
determining 5i , which, after simplification, is: 

E j ,II:j;t1l;ti IYi,jYi,II I 

E;,II:;;tll;ti IY;,II I 
(E;:#i IYi,; 1)2 - E;:;;ti if,; 

E;,II:;;tll IY;,II I - 2 Ej:j;ti IYj,i I 

By substituting the estimates 'Oi,; we get an estimate for aa' dl. This estimate can be 
computed in linear time except for the determination of Ej,II:j;tll IYj,II I which, although 
quadratic, does not depend on i and so can be computed once and for all. Thus it takes 
O(n2) time in total to estimate aa'd; for all i. 
It remains only to estimate a and the signs of the di'S. Briefly, to determine the signs we first 
stipulate that do is positive. (Because we never see z, one sign can be chosen at random.) 

IThe maximization phase works as though we were estimating parameters by taking averages 
based on weighted labeled data (Le., in which we see z). If ii is a sample point, these fictional data 
points are (ii,Z = 1) with weight Ui/U and (ii, z = 0) with weight Vi/V. 
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In principle, then, the sign of 0; will then be equal to the sign of Yo,;, which we have an 
estimate for. In practice, this can statistically unreliable for small sample sizes and so we 
use a more involved ''voting'' procedure (details omitted here). Finally we estimate Q. We 
have found no better method of doing this than to simply search for the optimal value, using 
likelihood as the search criterion. However, this is only a I-dimensional search and it turns 
out to be quite efficient in practice. 

5 Linear Separators and CIA 

Given a fully parameterized CIA model, we may be interested in predicting the value of 
one variable, say Xo, given known values for the remaining variables. One can show that 
in fact the optimal prediction region is given by a linear separator in the other variables, 
although we omit details of this derivationhere.2 This suggest an obvious learning strategy: 
simply try to find the line which minimizes this loss on the training set. Unfortunately, in 
general the task of finding a linear separator that minimizes disagreements on a collection 
of examples is known to be NP-hard [HS92]. So instead we use an algorithm called Winnow 
that is known to produce good results when a linear separator exists, as well as under certain 
more relaxed assumptions [Lit9I], and appears to be quite effective in practice. 

6 Learning using a Winnow-based algorithm 

The basic version of the Winnow algorithm [Lit88] keeps an n-dimensional vector w = 
(1011" .1On ) of positive weights (Le., w, is the weight associated with the ith feature), 
which it updates whenever a mistake is made. Initially, the weight vector is typically 
set to assign equal positive weight to all features. The algorithm has 3 parameters, a 
promotion parameter Q > I, a demotion parameter 0 < f3 < 1 and a threshold 8. For a 
given instance (:1:1, • "1 :l:n) the algorithm predicts that :1:0 = 1 iff E~l W,:I:, > 8. If the 
algorithm predicts 0 and the label (Le., :1:0) is 1 (positive example) then the weights which 
correspond to active attributes (:1:, = 1) are promoted-the weight 10, is replaced by a larger 
weight Q • Wi. Conversely, if algorithm predicts 1 and the received label is 0, then the 
weights which correspond to active features are demoted by factor {3. We allow for negative 
weights as follows. Given an example (:1:1" "1 :l:n), we rewrite it as an example over 2n 
variables (Y1, 'Y21 •.. I 'Y2n) where y, = :1:, and Yn+, = 1 - :1:,. We then apply Winnow just 
as above to learn 2n (positive) weights. If wi is the weight associated with :1:, and wi is 
the weight associated with :l:n+i (Le., 1 - :1:,), then the prediction rule is simply to compare 
E~=l(wi:l:, + wi(1 - :1:,)) with the threshold. 

In the experiments described here we have made two significant modifications to the basic 
algorithm. To reduce variance, our final classifier is a weighted average of several classifiers; 
each is trained using a subs ample from the training set, and its weight is based based on how 
well it was doing on that sample. Second, we biased the algorithm so as to look for "thick" 
classifiers. To understand this, consider the case in which the data is perfectly linearly 
separable. Then there will generally be many linear concepts that separate the training data 
we actually see. Among these, it seems plausible that we have a better chance of doing 
well on the unseen test data if we choose a linear concept that separates the positive and 
negative training examples as "widely" as possible. The idea of having a wide separation 
is less clear when there is no perfect separator, but we can still appeal to the basic intuition. 
To bias the search towards "thick" separators, we change Wmnow's training rule somewhat. 
We now have a new margin parameter T. As before, we always update when our current 
hypothesis makes a mistake, but now we also update if I E~=l Wi:l:, - 8 I is less than T, 

even if the prediction is correct. In our experiments, we found that performance when using 
this version of Winnow is better than that of the basic algorithm, so in this paper we present 
results for the former. 

2 A derivation for the slightly different case, for predicting z, can be found in [MP69J. 
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7 Experimental Methodology 
Aside from the choice of algorithm used, the number of attributes n, and the sample 
size 8, our experiments also differed in two other dimensions. These are the type of 
process generating the data (we will be interested in various deviations from CIA), and 
the "difficulty" of the problem. These features are determined by the data model we use 
(i.e., the distribution over {O, I} ft used to generate data sets). 

Our first experiments consider the case where the data really is drawn from a binary CIA 
distribution. We associated with any such distribution a "difficulty" parameter B, which is 
the accuracy with which one could predict the value of Z if one actually knew the correct 
model. (Of course, even with knowledge of the correct model we should not expect 100% 
accuracy.) The ability to control B allows us to select and study models with different 
qualitative characteristics. In particular, this has allowed us concentrated most of our 
experiments on fairly "hard" instances3, and to more meaningfully compare trials with 
differing numbers of attributes. We denote by CIA( n, 2, b) the class of all data models 
which are binary CIA distributions over n variables with difficulty b.4 The next family of 
data models we used are also CIA models, but now using more than two values for the 
hidden variable. We denote the family using Ie values as CIA(n, Ie, b) where n and b are as 
before. When Ie > 2 there are more complex correlation patterns between the Xi than when 
Ie = 2. Furthermore, the optimal predictor is not necessarily linear. The specific results we 
discuss in the next section have concentrated on this case. 

Given any set of parameters, including a particular class of data models, our experiments 
are designed with the goal of good statistical accuracy. We repeatedly (typically 100 to 
300 times) choose a data model at random from the chosen class, choose a sample of the 
appropriate size from this model, and then run all our algorithms. Each algorithm produces 
a (linear) hypothesis. We measure the success rate Salg (i.e., the proportion of times a 
hypothesis makes the correct prediction of :1:0) by drawing yet more random samples from 
the data model being used. In the test phase we always draw enough new samples so that 
the confidence interval for Salg, for the results on a single model, has width at most ± 1 %. 
We use the Salg values to construct a normalized measure of performance (denoted T) as 
follows. Let Sbest be the best possible accuracy attainable for predicting:l:o (i.e., the accuracy 
achieved by the actual model generating the data). Let Sconst denote the performance of 
the best possible constant prediction rule (i.e., the rule that predicts the most likely a priori 
value for :1:0). Note that Sconst and Sbest can vary from model to model. For each model we 

compute :alg--;onst ,and our normalized statistic T is the average of these values. It can be 
best- const 

thought of as measuring the percentage of the possible predictive power, over a plausible 
baseline, that an algorithm achieves. 

8 Results 
We only report on a small, but representative, selection of our experiments in any detail. 
For instance, although we have considered many values of n ranging from 10 to 500, here 
we show six graphs giving the learning curves for CIA(n, Ie, 0.90) for n = 10,75, and for 
Ie = 2,3,5; as noted, we display the T statistic. The error bars show the standard error,s 
providing a rough indication of accuracy. Not surprisingly, when the data model is binary 

3Note that if one simply chooses parameters of a CIA model independently at random, without 
examining the difficulty of the model or adjusting for n, one will get many trivial problems, in which 
it is easy to predict Z with nearly 100% accuracy, and thus predict optimally for Xo. 

41t is nontrivial to efficiently select random models from this class. Briefly, our scheme is to choose 
each parameter in a CIA model independently from a symmetric beta distribution. Thus, the model 
parameters will have expected value 0.5. We choose the parameter of the beta distribution (which 
determines concentration about 0.5) so that the average B value, of the models thus generated, equals 
b. Finally, we use rejection sampling to find CIA models with B values that are exactly b ± 1 %. 

5Computed as the observed standard deviation, divided by the square root of the number of trials. 



Linear Concepts and Hidden Variables: An Empirical Study 505 

CIA, the EM algorithm does extremely well, learning significantly (if not overwhelmingly) 
faster than Winnow. But as we depart from the binary CIA assumption, the performance of 
EM quickly degrades. 
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Figure 5: CIA(10,5,0.9) Figure 6: CIA(75,5,0.9) 
When Ie = 3 performances is, on the whole, very similar for Winnow and EM. But when 
Ie = 5 Winnow is already superior to EM; significantly and uniformly so for n = 10. For 
fixed Ie the difference seems to become somewhat less dramatic as n increases; in Figure 6 
(for n = 75) Winnow is less obviously dominant, and in fact is not better than EM until the 
sample size has reached 100. (But when 8 ~ n, meaning that we have fewer samples than 
attributes, the performance is unifonnly dismal anyway.) 

Should we attribute this degradation to the binary CIA assumption, or to the EM itself? 
This question is our reason for also considering the covariance algorithm. We see that the 
results for COY are generally similar to EM's, supporting our belief that the phenomena 
we see are properties inherent to the model rather than to the specific algorithm being used. 
Similarly (the results are omitted) we have tried several other algorithms that try to find 
good linear separators directly, including the classic Perceptron algorithm [MP69); our 
version of Winnow was the best on the experiments we tried and thus we conjecture that its 
performance is (somewhat) indicative of what is possible for any such approach. 

As the comparison between n = 10 and n = 75 illustrates, there is little qualitative differ-
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ence between the phenomena observed as the number of attributes increases. Nevertheless, 
as n grows it does seem that Winnow needs more examples before its performance surpasses 
that of the other algorithms (for any fixed k). As already noted, this may be due simply to 
the very "noisy" nature of the region 8 $ n. We also have reasons to believe that this is 
partially an artifact of way we select models. 

As previously noted, we also experimented with varying "difficulty" (B) levels. Although 
we omit the corresponding figures we mentioned that the main difference is that Winnow is a 
little faster in surpassing EM when the data deviates from the assumed model, but when the 
data model really is binary CIA, and EM converge even faster to an optimal performance. 

These patterns were confinned when we tried to compare the approaches on real data. We 
have used data that originates from a problem in which assuming a hidden "context" variable 
seems somewhat plausible. The data is taken from the context-sensitive spelling correction 
domain. We used one data set from those that were used in [GR96]. For example, given 
sentences in which the word passed or past appear, the task is to determine, for each such 
occurrence, which of the two it should be. This task may be modeled by thinking of the 
"context" as a hidden variable in our sense. Yet when we tried to learn in this case under 
the CIA model, with a binary valued hidden variable, the results were no better than just 
predicting the most likely classification (around 70%). Winnow, in contrast, performed 
extremely well and exceeds 95% on this task. We hesitate to read much into our limited 
real-data experiments, other than to note that so far they are consistent witli the more careful 
experiments on synthetic data. 

9 Conclusion 
By restricting to a binary hidden variable, we have been able to consider a "fair" comparison 
between probabilistic model construction, and more traditional algorithms that directly 
learn a classification-at least in the sense that both have the same expressive power. Our 
conclusions concerning the fragility of the former should not be surprising but we believe 
that given the importance of the problem it is valuable to have some idea of the true 
significance of the effect. As we have indicated, in many real-world cases, where a model 
of the sort we have considered here seems plausible, it is impossible to nail down more 
specific characterizations of the probabilistic model. Our results exhibit how important it 
is to use the correct model and how sensitive are the results to deviations from it, when 
attempting to learn using model construction. The purpose of this paper is not to advocate 
that in practice one should use either Winnow or binary CIA in exactly the form considered 
here. A richer probabilistic model should be used along with a model selection phase. 
However, studying the problem in a restricted and controlled environment in crucial so as 
to understand the nature and significance of this fundamental problem. 
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