
Linear concepts and hidden variables:
An empirical study

Adam J. Grove
NEC Research Institute

4 Independence Way
Princeton NJ 08540

grove@research.nj.nec.com

Dan Rothe
Department of Computer Science

University of Illinois at Urbana-Champaign
1304 W. Springfield Ave. Urbana 61801

danr@cs.uiuc.edu

Abstract
Some learning techniques for classification tasks work indirectly, by first trying
to fit a full probabilistic model to the observed data. Whether this is a good idea
or not depends on the robustness with respect to deviations from the postulated
model. We study this question experimentally in a restricted, yet non-trivial and
interesting case: we consider a conditionally independent attribute (CIA) model
which postulates a single binary-valued hidden variable z on which all other
attributes (i.e., the target and the observables) depend. In this model, finding the
most likely value of anyone variable (given known values for the others) reduces
to testing a linear function of the observed values.

We learn CIA with two techniques: the standard EM algorithm, and a new
algorithm we develop based on covariances. We compare these, in a controlled
fashion, against an algorithm (a version of Winnow) that attempts to find a good
linear classifier directly. Our conclusions help delimit the fragility of using the
CIA model for classification: once the data departs from this model, performance
quickly degrades and drops below that of the directly-learned linear classifier.

1 Introduction
We consider the classic task of predicting a binary (0/1) target variable zo, based on
the values of some n other binary variables ZI ••• Zft,. We can distinguish between two
styles of learning approach for such tasks. Parametric algorithms postulate some form of
probabilistic model underlying the data, and try to fit the model's parameters. To classify an
example we can compute the conditional probability distribution for Zo given the values of
the known variables, and then predict the most probable value. Non-parametric algorithms
do not assume that the training data has a particular form. They instead search directly in
the space of possible classification functions, attempting to find one with small error on the
training set of examples.

An important advantage of parametric approaches is that the induced model can be used to
support a wide range of inferences, aside from the specified classification task. On the other
hand, to postulate a particular form of probabilistic model can be a very strong assumption.

"Partly supported by ONR grant NOOOI4-96-1-0550 while visiting Harvard University.

Linear Concepts and Hidden Variables: An Empirical Study 501

So it is important to understand how robust such methods are when the real world deviates
from the assumed model.

In this paper, we report on some experiments that test this issue. We consider the specific
case of n + 1 conditionally independent attributes Zi together with a single unobserved
variable z, also assumed to be binary valued, on which the Zi depend (henceforth, the
binary CIA model); see Section 2. In fact, such models are plausible in many domains
(for instance, in some language interpretation tasks; see [GR96]). We fit the parameters of
the CIA model using the well-known expectation-maximization (EM) technique [DLR77],
and also with a new algorithm we have developed based on estimating covariances; see
Section 4. In the nonparametric case, we simply search for a good linear separator. This is
because the optimal predictors for the binary CIA model (i.e., for predicting one variable
given known values for the rest) are also linear. This means that our comparison is "fair"
in the sense that neither strategy can choose from classifiers with more expressive power
than the other. As a representative of the non-parametric class of algorithms, we use the
Winnow algorithm of [Lit881, with some modifications (see Section 6). Winnow works
directly to find a "good" linear separator. It is guaranteed to find a perfect separator if one
exists, and empirically seems to be fairly successful even when there is no perfect separator
[GR96, Blu9?]. It is also very fast.

Our experimental methodology is to first generate synthetic data from a true CIA model
and test performance; we then study various deviations from the model. There are various
interesting issues involved in constructing good experiments, including the desirability of
controlling the inherent "difficulty" of learning a model. Since we cannot characterize the
entire space, we consider here only deviations in which the data is drawn from a CIA model
in which the hidden variable can take more than two values. (Note that the optimal classifier
given Zo is generally not linear in this case.)

Our observations are not qualitatively surprising. CIA does well when the assumed model
is correct, but performance degrades when the world departs from the model. But as we
discuss, we found it surprising how fragile this model can sometimes be, when compared
against algorithms such as Winnow. This is even though the data is not linearly separable
either, and so one might expect the direct learning techniques to degrade in performance as
well. But it seems that Wmnow and related approaches are far less fragile. Thus the main
contribution of this work is that our results shed light on the specific tradeoff between fitting
parameters to a probabilistic model, versus direct search for a good classifier. Specifically,
they illustrate the dangers of predicting using a model that is even "slightly" simpler than
the distribution actually generating the data, vs. the relative robustness of directly searching
for a good predictor. This would seem to be an important practical issue, and highlights the
need for some better theoretical understanding of the notion of "robustness".

2 Conditionally Independent Attributes

Throughout we assume that each example is a binary vector z E {O, 1 }n+l, and that each
example is generated independently at random according to some unknown distribution on
{O, 1 }n+l. We use Xi to denote the i'th attribute, considered as a random variable, and Zi

to denote a value for Xi. In the conditionally independent attribute (CIA) model, examples
are generated as follows. We postulate a "hidden" variable Z with Ie values, which takes
values z for 0 $ z < Ie with probability a. ~ O. Since we must have E::~ a. = 1
there are Ie - 1 independent parameters. Having randomly chosen a value z for the hidden
variable, we choose the value Zi for each observable Xi: the value is 1 with probability
p~.}, and 0 otherwise. Here p~.} E [0,1). The attributes' values are chosen independently
of each other, although z remains fixed. Note that there are thus (n + 1)1e probability

parameters p~.). In the following, let l' denote the set of all (n + 1)1e + Ie - 1 parameters
in the model. From this point, and until Section 7, we always assume that Ie = 2 and in this
case, to simplify notation, we write al as a, ao (= 1 - a) as ai, p! as Pi and p~ as qi.

502 A. 1. Grove and D. Roth

3 The Expectation-Maximization algorithm (EM)

One traditional unsupervised approach to learning the parameters of this model is to find
the maximum-likelihood parameters of the distribution given the data. That is, we attempt
to find the set of parameters that maximizes the probability of the data observed.

Finding the maximum likelihood parameterization analytically appears to be a difficult
problem, even in this rather simple setting. However, a practical approach is to use the well­
known Expectation-Maximization algorithm (EM) [DLR77], which is an iterative approach
that always converges to a local maximum of the likelihood function. In our setting, the
procedure is as follows. We simply begin with a randomly chosen parameterization p, and
then we iterate until (apparent) convergence: 1

Expectation: For all zi, compute Ui = p-p(zi 1\ Z = 1) and Vi = p-p(zi 1\ Z = 0).

Maximization: Reestimate P as follows (writing U = Ei Ui and V = Ei Vi):

a f- E:=I Ui/(U + V) P; f- E{i::i~=I} u;./U qj f- E{i::i~=I} Vi/V.
After convergence has been detected all we kno'w is that we are near a [ocdi minima of the
likelihood function. Thus it is prudent to repeat the process with many different restarts.
(All our experiments were extremely conservative concerning the stopping criteria at each
iteration, and in the number of iterations we tried.) But in practice, we are never sure that
the true optimum has been located.

4 Covariances-Based approach
Partly in response to concern just expressed, we also developed another heuristic technique
for learning P. The algorithm, which we call COY, is based on measuring the covariance
between pairs of attributes. Since we do not see Z, attributes will appear to be correlated. In
fact, if the CIA model is correct, it is easy to show that covariance between Xi and X j (de­
fined as Yi,; = ~,; - ~I-'; where~, 1-';, ~,; are the expectations of Xi, Xj, (Xi and Xj),
respectively), will be Yi,j = aa'did; where di denotes Pi - qi. We also know that the
expected value of Xi is ~ = aPi + a'qi. Furthermore, we will be able to get very accurate
estimates of ~ just by observing the proportion of samples in which Zi is 1. Thus, if we
could estimate both a and di it would be trivial to solve for estimates of Pi and qi.
To estimate di, suppose we have computed all the pairwise covariances using the data;
we use fli,; to denote our estimate of Yi,j' For any distinct j, Ie i= i we clearly have
aa l 5; = IV'rd.r"/o1 so we could estimate d; using this equation. A better estimate would be

"/o
to consider all pairs j, Ie and average the individual estimates. However, not all individual
estimates are equally good. It can be shown that the smaller Y;,II is, the less reliable
we should expect the estimate to be (and in the limit, where X; and XII are perfectly
uncorrelated, we get no valid estimate at all). This suggests that we use a weighted average,
with the weights proportional to Yj,II. Using these weights leads us to the next equation for
determining 5i , which, after simplification, is:

E j ,II:j;t1l;ti IYi,jYi,II I

E;,II:;;tll;ti IY;,II I
(E;:#i IYi,; 1)2 - E;:;;ti if,;

E;,II:;;tll IY;,II I - 2 Ej:j;ti IYj,i I

By substituting the estimates 'Oi,; we get an estimate for aa' dl. This estimate can be
computed in linear time except for the determination of Ej,II:j;tll IYj,II I which, although
quadratic, does not depend on i and so can be computed once and for all. Thus it takes
O(n2) time in total to estimate aa'd; for all i.
It remains only to estimate a and the signs of the di'S. Briefly, to determine the signs we first
stipulate that do is positive. (Because we never see z, one sign can be chosen at random.)

IThe maximization phase works as though we were estimating parameters by taking averages
based on weighted labeled data (Le., in which we see z). If ii is a sample point, these fictional data
points are (ii,Z = 1) with weight Ui/U and (ii, z = 0) with weight Vi/V.

Linear Concepts and Hidden Variables: An Empirical Study 503

In principle, then, the sign of 0; will then be equal to the sign of Yo,;, which we have an
estimate for. In practice, this can statistically unreliable for small sample sizes and so we
use a more involved ''voting'' procedure (details omitted here). Finally we estimate Q. We
have found no better method of doing this than to simply search for the optimal value, using
likelihood as the search criterion. However, this is only a I-dimensional search and it turns
out to be quite efficient in practice.

5 Linear Separators and CIA

Given a fully parameterized CIA model, we may be interested in predicting the value of
one variable, say Xo, given known values for the remaining variables. One can show that
in fact the optimal prediction region is given by a linear separator in the other variables,
although we omit details of this derivationhere.2 This suggest an obvious learning strategy:
simply try to find the line which minimizes this loss on the training set. Unfortunately, in
general the task of finding a linear separator that minimizes disagreements on a collection
of examples is known to be NP-hard [HS92]. So instead we use an algorithm called Winnow
that is known to produce good results when a linear separator exists, as well as under certain
more relaxed assumptions [Lit9I], and appears to be quite effective in practice.

6 Learning using a Winnow-based algorithm

The basic version of the Winnow algorithm [Lit88] keeps an n-dimensional vector w =
(1011" .1On) of positive weights (Le., w, is the weight associated with the ith feature),
which it updates whenever a mistake is made. Initially, the weight vector is typically
set to assign equal positive weight to all features. The algorithm has 3 parameters, a
promotion parameter Q > I, a demotion parameter 0 < f3 < 1 and a threshold 8. For a
given instance (:1:1, • "1 :l:n) the algorithm predicts that :1:0 = 1 iff E~l W,:I:, > 8. If the
algorithm predicts 0 and the label (Le., :1:0) is 1 (positive example) then the weights which
correspond to active attributes (:1:, = 1) are promoted-the weight 10, is replaced by a larger
weight Q • Wi. Conversely, if algorithm predicts 1 and the received label is 0, then the
weights which correspond to active features are demoted by factor {3. We allow for negative
weights as follows. Given an example (:1:1" "1 :l:n), we rewrite it as an example over 2n
variables (Y1, 'Y21 •.. I 'Y2n) where y, = :1:, and Yn+, = 1 - :1:,. We then apply Winnow just
as above to learn 2n (positive) weights. If wi is the weight associated with :1:, and wi is
the weight associated with :l:n+i (Le., 1 - :1:,), then the prediction rule is simply to compare
E~=l(wi:l:, + wi(1 - :1:,)) with the threshold.

In the experiments described here we have made two significant modifications to the basic
algorithm. To reduce variance, our final classifier is a weighted average of several classifiers;
each is trained using a subs ample from the training set, and its weight is based based on how
well it was doing on that sample. Second, we biased the algorithm so as to look for "thick"
classifiers. To understand this, consider the case in which the data is perfectly linearly
separable. Then there will generally be many linear concepts that separate the training data
we actually see. Among these, it seems plausible that we have a better chance of doing
well on the unseen test data if we choose a linear concept that separates the positive and
negative training examples as "widely" as possible. The idea of having a wide separation
is less clear when there is no perfect separator, but we can still appeal to the basic intuition.
To bias the search towards "thick" separators, we change Wmnow's training rule somewhat.
We now have a new margin parameter T. As before, we always update when our current
hypothesis makes a mistake, but now we also update if I E~=l Wi:l:, - 8 I is less than T,

even if the prediction is correct. In our experiments, we found that performance when using
this version of Winnow is better than that of the basic algorithm, so in this paper we present
results for the former.

2 A derivation for the slightly different case, for predicting z, can be found in [MP69J.

504 A. J Grove and D. Roth

7 Experimental Methodology
Aside from the choice of algorithm used, the number of attributes n, and the sample
size 8, our experiments also differed in two other dimensions. These are the type of
process generating the data (we will be interested in various deviations from CIA), and
the "difficulty" of the problem. These features are determined by the data model we use
(i.e., the distribution over {O, I} ft used to generate data sets).

Our first experiments consider the case where the data really is drawn from a binary CIA
distribution. We associated with any such distribution a "difficulty" parameter B, which is
the accuracy with which one could predict the value of Z if one actually knew the correct
model. (Of course, even with knowledge of the correct model we should not expect 100%
accuracy.) The ability to control B allows us to select and study models with different
qualitative characteristics. In particular, this has allowed us concentrated most of our
experiments on fairly "hard" instances3, and to more meaningfully compare trials with
differing numbers of attributes. We denote by CIA(n, 2, b) the class of all data models
which are binary CIA distributions over n variables with difficulty b.4 The next family of
data models we used are also CIA models, but now using more than two values for the
hidden variable. We denote the family using Ie values as CIA(n, Ie, b) where n and b are as
before. When Ie > 2 there are more complex correlation patterns between the Xi than when
Ie = 2. Furthermore, the optimal predictor is not necessarily linear. The specific results we
discuss in the next section have concentrated on this case.

Given any set of parameters, including a particular class of data models, our experiments
are designed with the goal of good statistical accuracy. We repeatedly (typically 100 to
300 times) choose a data model at random from the chosen class, choose a sample of the
appropriate size from this model, and then run all our algorithms. Each algorithm produces
a (linear) hypothesis. We measure the success rate Salg (i.e., the proportion of times a
hypothesis makes the correct prediction of :1:0) by drawing yet more random samples from
the data model being used. In the test phase we always draw enough new samples so that
the confidence interval for Salg, for the results on a single model, has width at most ± 1 %.
We use the Salg values to construct a normalized measure of performance (denoted T) as
follows. Let Sbest be the best possible accuracy attainable for predicting:l:o (i.e., the accuracy
achieved by the actual model generating the data). Let Sconst denote the performance of
the best possible constant prediction rule (i.e., the rule that predicts the most likely a priori
value for :1:0). Note that Sconst and Sbest can vary from model to model. For each model we

compute :alg--;onst ,and our normalized statistic T is the average of these values. It can be
best- const

thought of as measuring the percentage of the possible predictive power, over a plausible
baseline, that an algorithm achieves.

8 Results
We only report on a small, but representative, selection of our experiments in any detail.
For instance, although we have considered many values of n ranging from 10 to 500, here
we show six graphs giving the learning curves for CIA(n, Ie, 0.90) for n = 10,75, and for
Ie = 2,3,5; as noted, we display the T statistic. The error bars show the standard error,s
providing a rough indication of accuracy. Not surprisingly, when the data model is binary

3Note that if one simply chooses parameters of a CIA model independently at random, without
examining the difficulty of the model or adjusting for n, one will get many trivial problems, in which
it is easy to predict Z with nearly 100% accuracy, and thus predict optimally for Xo.

41t is nontrivial to efficiently select random models from this class. Briefly, our scheme is to choose
each parameter in a CIA model independently from a symmetric beta distribution. Thus, the model
parameters will have expected value 0.5. We choose the parameter of the beta distribution (which
determines concentration about 0.5) so that the average B value, of the models thus generated, equals
b. Finally, we use rejection sampling to find CIA models with B values that are exactly b ± 1 %.

5Computed as the observed standard deviation, divided by the square root of the number of trials.

Linear Concepts and Hidden Variables: An Empirical Study 505

CIA, the EM algorithm does extremely well, learning significantly (if not overwhelmingly)
faster than Winnow. But as we depart from the binary CIA assumption, the performance of
EM quickly degrades.

CI"(10.2.0.1IO) ,""
'00 --_ .. -

loo
Joo I ·· z

..

t 40

J: m -EM

- - oa>I

......

......, ,0 .. '00 ... '000
.oIT~~

Figure 1: CIA(10,2,0.9)
OA,(10 •• ,O.IO)

'00 ..
00

l
}oo
j40

I"" m -E ..
- - oa>I

...... ,0 .. '00 ... '000
.dT"INng~

Figure 3: CIA(1O,3,0.9)
CIAC10.a,O.1O)

..
loo '-----'

140

too

I 0

-20

......,~,o~----~ .. ~~,~~~-----=*~~,_
.oIT' ExemPM

'00

00

lOO
, 40

j:
)-......,
-....

'0

00

00

l40

I"" t 0

J
......,

- ,0

10

40

l
, 20

j a

)-
......,

- '0

Cl"(78.2.0.1IO)

,
, .­,

,1,1 of ,.·f
~i'.~/

~ _ ~~! ~ .. ! -,-4· m·· ""--EM

- - oa>I

.. '00 ... '000
.oIT,.......~

Figure 2: CIA(75,2,0.9)
CIA(78,',O.1O) m···""-

-EM

- - oa>I

.. '00 ... '000
.01 Tralring ~

Figure 4: CIA(75,3,0.9)
CIA(7 •••• o..a)

" -1--
_---t--rI

-r'

m -E ..
- - oa>I

eo '00 ... 'ODD
.oIT~~

Figure 5: CIA(10,5,0.9) Figure 6: CIA(75,5,0.9)
When Ie = 3 performances is, on the whole, very similar for Winnow and EM. But when
Ie = 5 Winnow is already superior to EM; significantly and uniformly so for n = 10. For
fixed Ie the difference seems to become somewhat less dramatic as n increases; in Figure 6
(for n = 75) Winnow is less obviously dominant, and in fact is not better than EM until the
sample size has reached 100. (But when 8 ~ n, meaning that we have fewer samples than
attributes, the performance is unifonnly dismal anyway.)

Should we attribute this degradation to the binary CIA assumption, or to the EM itself?
This question is our reason for also considering the covariance algorithm. We see that the
results for COY are generally similar to EM's, supporting our belief that the phenomena
we see are properties inherent to the model rather than to the specific algorithm being used.
Similarly (the results are omitted) we have tried several other algorithms that try to find
good linear separators directly, including the classic Perceptron algorithm [MP69); our
version of Winnow was the best on the experiments we tried and thus we conjecture that its
performance is (somewhat) indicative of what is possible for any such approach.

As the comparison between n = 10 and n = 75 illustrates, there is little qualitative differ-

506 A. J. Grove and D. Roth

ence between the phenomena observed as the number of attributes increases. Nevertheless,
as n grows it does seem that Winnow needs more examples before its performance surpasses
that of the other algorithms (for any fixed k). As already noted, this may be due simply to
the very "noisy" nature of the region 8 $ n. We also have reasons to believe that this is
partially an artifact of way we select models.

As previously noted, we also experimented with varying "difficulty" (B) levels. Although
we omit the corresponding figures we mentioned that the main difference is that Winnow is a
little faster in surpassing EM when the data deviates from the assumed model, but when the
data model really is binary CIA, and EM converge even faster to an optimal performance.

These patterns were confinned when we tried to compare the approaches on real data. We
have used data that originates from a problem in which assuming a hidden "context" variable
seems somewhat plausible. The data is taken from the context-sensitive spelling correction
domain. We used one data set from those that were used in [GR96]. For example, given
sentences in which the word passed or past appear, the task is to determine, for each such
occurrence, which of the two it should be. This task may be modeled by thinking of the
"context" as a hidden variable in our sense. Yet when we tried to learn in this case under
the CIA model, with a binary valued hidden variable, the results were no better than just
predicting the most likely classification (around 70%). Winnow, in contrast, performed
extremely well and exceeds 95% on this task. We hesitate to read much into our limited
real-data experiments, other than to note that so far they are consistent witli the more careful
experiments on synthetic data.

9 Conclusion
By restricting to a binary hidden variable, we have been able to consider a "fair" comparison
between probabilistic model construction, and more traditional algorithms that directly
learn a classification-at least in the sense that both have the same expressive power. Our
conclusions concerning the fragility of the former should not be surprising but we believe
that given the importance of the problem it is valuable to have some idea of the true
significance of the effect. As we have indicated, in many real-world cases, where a model
of the sort we have considered here seems plausible, it is impossible to nail down more
specific characterizations of the probabilistic model. Our results exhibit how important it
is to use the correct model and how sensitive are the results to deviations from it, when
attempting to learn using model construction. The purpose of this paper is not to advocate
that in practice one should use either Winnow or binary CIA in exactly the form considered
here. A richer probabilistic model should be used along with a model selection phase.
However, studying the problem in a restricted and controlled environment in crucial so as
to understand the nature and significance of this fundamental problem.

References

[Blu97] A. Blum. Empirical support for winnow and weighted majority based algorithms: results on
a calendar scheduling domain. Machine Learning, 26: 1-19, 1997.

[DLR 77] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data
via the EM algorithm. Royal Statistical SOCiety B, 39: 1-38, 1977.

[GR96] A. R. Golding and D. Roth. Applying winnow to context-sensitive spelling correcton. In
Proc. 13th International Conference on Machine Learning (ML' 96), pages 182-190, 1996.

[HS92] K. HOffgen and H. Simon. Robust trainability of single neurons. In Proc. 5th Annu. Workshop
on Comput. Learning Theory, pages 428-439, New York, New York, 1992. ACM Press.

[Lit88] N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm. Machine Learning, 2:285-318,1988.

[Lit91] N. Littlestone. Redundant noisy attributes, attribute errors, and linear threshold learning
using Winnow. In Proc. 4th Annu. Workshop on Comput. Learning Theory, pages 147-156, San
Mateo, CA, 1991. Morgan Kaufmann.

[MP69] M. L. Minsky and S. A. Papert. Perceptrons. MIT Press, Cambridge, MA, 1969.

