
S-Map: A network with a simple
self-organization algorithm for generative

topographic mappings

Kimmo Kiviluoto
Laboratory of Computer and

Information Science
Helsinki University of Technology

P.O. Box 2200
FIN-02015 HUT, Espoo, Finland

Kimmo.KiviluotoChut.fi

Erkki Oja
Laboratory of Computer and

Information Science
Helsinki University of Technology

P.O. Box 2200
FIN-02015 HUT, Espoo, Finland

Erkki.OjaChut.fi

Abstract

The S-Map is a network with a simple learning algorithm that com­
bines the self-organization capability of the Self-Organizing Map
(SOM) and the probabilistic interpretability of the Generative To­
pographic Mapping (GTM). The simulations suggest that the S­
Map algorithm has a stronger tendency to self-organize from ran­
dom initial configuration than the GTM. The S-Map algorithm
can be further simplified to employ pure Hebbian learning, with­
out changing the qualitative behaviour of the network.

1 Introduction

The self-organizing map (SOM; for a review, see [1]) forms a topographic mapping
from the data space onto a (usually two-dimensional) output space. The SOM has
been succesfully used in a large number of applications [2]; nevertheless, there are
some open theoretical questions, as discussed in [1, 3]. Most of these questions
arise because of the following two facts: the SOM is not a generative model, i.e. it
does not generate a density in the data space, and it does not have a well-defined
objective function that the training process would strictly minimize.

Bishop et al. [3] introduced the generative topographic mapping (GTM) as a solution
to these problems. However, it seems that the GTM requires a careful initialization
to self-organize. Although this can be done in many practical applications, from a
theoretical point of view the GTM does not yet offer a fully satisfactory model for
natural or artificial self-organizing systems.

550 K. Kiviluoto and E. Oja

In this paper, we first briefly review the SOM and GTM algorithms (section 2); then
we introduce the S-Map, which may be regarded as a crossbreed of SOM and GTM
(section 3); finally, we present some simulation results with the three algorithms
(section 4), showing that the S-Map manages to combine the computational sim­
plicity and the ability to self-organize of the SOM with the probabilistic framework
of the GTM.

2 SOM and GTM

2.1 The SOM algorithm

The self-organizing map associates each data vector et with that map unit that has
its weight vector closest to the data vector. The activations 11! of the map units are
given by

~ = {I, when IIJLi - etll < IIJLj - etll, 'Vj # i
11, 0, otherwise (1)

where JLi is the weight vector of the ith map unit Ci, i = 1, . . . , K. Using these
activations, the SOM weight vector update rule can be written as

K

JLj := JLj + tSt L 11:h(Ci' Cj ; j3t)(et - JLj) (2)
i=l

Here parameter tSt is a learning rate parameter that decreases with time. The neigh­
borhood function h(Ci' Cj ; j3t) is a decreasing function of the distance between map
units Ci and Cj ; j3t is a width parameter that makes the neighborhood function get
narrower as learning proceeds. One popular choice for the neighborhood function
is a Gaussian with inverse variance j3t.

2.2 The GTM algorithm

In the GTM algorithm, the map is considered as a latent space, from which a
nonlinear mapping to the data space is first defined. Specifically, a point C in the
latent space is mapped to the point v in the data space according to the formula

L

v(C; M) = MtP(C) = L ¢j(C)JLj (3)
j=l

where tP is a vector consisting of L Gaussian basis functions, and M is a D x L
matrix that has vectors ILj as its columns, D being the dimension of the data space.

The probability density p(C) in the latent space generates a density to the manifold
that lies in the data space and is defined by (3). IT the latent space is of lower
dimension than the data space, the manifold would be singular, so a Gaussian noise
model is added. A single point in the latent space generates thus the following
density in the data space:

(j3)D/2 [j3] p(eIC;M,j3)= 211' exp -2'llv(C;M)-eW (4)

where j3 is the inverse of the variance of the noise.

The key point of the GTM is to approximate the density in the data space by
assuming the latent space prior p(C) to consist of equiprobable delta functions that

S-Map 551

form a regular lattice in the latent space. The centers Ci of the delta functions are
called the latent vectors of the GTM, and they are the GTM equivalent to the SOM
map units. The approximation of the density generated in the data space is thus
given by

1 K
p(eIM,m = K LP(elCi;M,,8)

i=l
(5)

The parameters of the GTM are determined by minimizing the negative log likeli­
hood error

f(M,,8) = - t. ln [~ t.P({'IC,;M,,8)] (6)

over the set of sample vectors {et }. The batch version of the GTM uses the EM
algorithm [4]; for details, see [3]. One may also resort to an on-line gradient descent
procedure that yields the GTM update steps

K

1L~+1 := IL~ + 6t ,8t L lI:(Mt ,,8t)<pj(Ci)[et - v(Ci;Mt)] (7)
i=l

fJH' := i3' + 6' [~ t. ~hM', (J')lle' - v(C,; MI)II' - 2~] (8)

where 11: (M,,8) is the GTM counterpart to the SOM unit activation, the posterior
probability p(Cilet ; M,,8) of the latent vector Ci given data vector et :

lIf(M,,8) = p(Cilet ;M,,8)

p(etICi; M,,8)

- L:f.=1 p(etICi'; M,,8) (9)

exp[-~IIV(Ci;M) _e t Il2]

2.3 Connections between SOM and GTM

Let us consider a GTM that has an equal number of latent vectors and basis func­
tions!, each latent vector Ci being the center for one Gaussian basis function <Pi(C).
Latent vector locations may be viewed as units of the SOM, and consequently the
basis functions may be interpreted as connection strengths between the units. Let
us use the shorthand notation <P~ == <Pj(Ci). Note that <P~ = <frt, and assume that

the basis functions be normalized so that L:~l <P~ = L:~1 <P~ = 1.

At the zero-noise limit, or when ,8 ~ 00, the softmax activations of the GTM given
in (9) approach the winner-take-all function (1) of the SOM. The winner unit Cc(t)
for the data vector et is the map unit that has its image closest to the data vector,
so that the index c(t) is given by

c(t) = ar~in Ilv(C,) - e'll = ~in (t, 4>;1';) - {t (10)

INote that this choice serves the purpose of illustration only; to use GTM properly,
one should choose much more latent vectors than basis functions.

552 K. Kiviluoto and E. Oja

The GTM weight update step (7) then becomes

IL~+1 := IL~ + ~t¢j(t) ret - v(c(t); Mt)] (11)

This resembles the variant of SOM, in which the winner is searched with the rule (10)
and weights are updated as

IL~+1 := ILj +~t¢j(t)(et - IL;) (12)

Unlike the original SOM rules (1) and (2), the modified SOM with rules (10)
and (12) does minimize a well-defined objective function: the SOM distortion mea­
sure [5, 6, 7, 1]. However, there is a difference between GTM and SOM learning
rules (11) and (12). With SOM, each individual weight vector moves towards the
data vector, but with GTM, the image ofthe winnerlatent vector v(c(t); M) moves
towards the data vector, and all weight vectors ILj move to the same direction.

For nonzero noise, when 0 < f3 < 00, there is more difference between GTM and
SOM: with GTM, not only the winner unit but activations from other units as well
contribute to the weight update.

3 S-Map

Combining the softmax activations of the GTM and the learning rule of the SOM,
we arrive at a new algorithm: the S-Map.

3.1 The S-Map algorithm

The S-Map resembles a GTM with an equal number of latent vectors and basis
functions. The position of the ith unit on the map is is given by the latent vector
(i; the connection strength of the unit to another unit j is ¢), and a weight vector
ILi is associated with the unit. The activation of the unit is obtained using rule (9).

The S-Map weights learn proportionally to the activation of the unit that the weight
is associated with, and the activations of the neighboring units:

1'1+1 ,= 1'; +6' (t. ¢iij:) (e' -1';) (13)

which can be further simplified to a fully Hebbian rule, updating each weight pro­
portionally to the activation of the corresponding unit only, so that

IL}+l := ILj + ~t7]~ (e t - ILj) (14)

The parameter f3 value may be adjusted in the following way: start with a small
value, slowly increase it so that the map unfolds and spreads out, and then keep
increasing the value as long as the error (6) decreases. The parameter adjustment
scheme could also be connected with the topographic error of the mapping, as
proposed in [9] for the SOM.

Assuming normalized input and weight vectors, the "dot-product metric" form of
the learning rules (13) and (14) may be written as

1')+1 ,= 1'] + 6' (t. ¢;ij:) (I -1']1'?)e' (15)

S-Map 553

and
JL~+1 := 1') + 6t1Jj(I - JL)JLf)et (16)

respectively; the matrix in the second parenthesis keeps the weight vectors normal­
ized to unit length, assuming a small value for the learning rate parameter 6t [8].
The dot-product metric form of a unit activity is

~' = exp [,8 (L:~1 ¢)I't {t]
l L: ==1 exp [13 (Lf=1 1>;' JLj) T et]

(17)

which approximates the posterior probability p('ilet; M, 13) that the data vector
were generated by that specific unit. This is based on the observation that if the
data vectors {et } are normalized to unit length, the density generated in the data
space (unit sphere in RD) becomes

al.. -1 K
norm lzmg i

[()
T]

p({IC,; M,,8) = (constant) x exp ,8 f;. ¢jl'j {

3.2 S-Map algorithm minimizes the GTM error function in
dot-product metric

(18)

The GTM error function is the negative log likelihood, which is given by (6) and is
reproduced here:

(19)

When the weights are updated using a batch version of (15), accumulating the
updates for one epoch, the expected value of the error [4] for the unit (i is

T

E(£rW) = - LpOld(ilet;M,m In[p°ewU:i)pOeW(et l(i;M,!3)]
t=1 ' '" -'-----T/~Id.t ==1!K

T (K) T (20)
= - L 1J~ld,t 13 L 1>] JLjew et + terms not involving the weight vectors

t==1 j==1

The change of the error for the whole map after one epoch is thus
K T K

E(£oew - fOld) = - L L L 1J~ld,t131>;(JLjew - JLjldfet

i=1 t=1 j=1

= - p.s t, (~ ~ q~ld" ¢;{t) T (I - I'lld 1''Jld T) (t, t, q~ld,t' ¢j' (")
, '" -' '", -'(21)

aT ~
J

K

= -136 L[uf Uj - (uf JLjld)2] ~ 0
j=1

with equality only when the weights are already in the error minimum.

554 K. Kiviluoto and E. Oja

4 Experimental results

The self-organization ability of the SOM, the GTM, and the S-Map was tested on
an artificial data set: 500 points from a uniform random distribution in the unit
square.

The initial weight vectors for all models were set to random values, and the final
configuration of the map was plotted on top of the data (figure 1). For all the algo­
rithms, the batch version was used. The SOM was trained as recommended in [1] -
in two phases, the first starting with a wide neighborhood function, the second with
a narrow neighborhood. The GTM was trained using the Matlab implementation
by Svensen, following the recommendations given in [to]. The S-Map was trained in
two ways: using the "full" rule (13), and the simplified rule (14) . In both cases, the
parameter {3 value was slowly increased every epoch; by monitoring the error (6) of
the S-Map (see the error plot in the figure) the suitable value for {3 can be found.

In the GTM simulations, we experimented with many different choices for basis
function width and their number, both with normalized and unnormalized basis
functions. It turned out that GTM is somewhat sensitive to these choices: it had
difficulties to unfold after a random initialization, unless the basis functions were set
so wide (with respect to the weight matrix prior) that the map was well-organized
already in its initial configuration. On the other hand, using very wide basis func­
tions with the GTM resulted in a map that was too rigid to adapt well to the data.
We also tried to update the parameter {3 according to an annealing schedule, as
with the S-Map, but this did not seem to solve the problem.

[. " ,'-.
. .

I' . . .
r··
I.

.' . . : :.

:~"" "

: .. . ' : .

,.
.'

r ." " :, .. :.

f .
~: .. , n '

~. . . .

r··· ':
l~~ .. : .. ' ' ~ '. ,':'

... . . 7 '

" ~ .

f
:t;jj ,{ .~ .. " .. : . .' i l'
.f.:t+1. . .t}'.
..... hS*

~:_I;r7.
.~
.. t'>i . ~:

:H~' , .-'
· ~· . ';I..r.' ·I.n

'~.' .~ . ~.

Figure 1: Random initialization (top left), SOM (top middle), GTM (top right),
"full" S-Map (bottom left), simplified S-Map (bottom middle), On bottom right,
the S-Map error as a function of epochs is displayed; the parameter {3 was slightly
increased every epoch, which causes the error to increase in the early (unfolding)
phase of the learning, as the weight update only minimizes the error for a given {3.

5 Conclusions

The S-Map and SOM seem to have a stronger tendency to self-organize from random
initialization than the GTM. In data analysis applications, when the GTM can

S-Map 555

be properly initialized, SOM, S-Map, and GTM yield comparable results; those
obtained using the latter two algorithms are also straightforward to interpret in
probabilistic terms. In Euclidean metric, the GTM has the additional advantage
of guaranteed convergence to some error minimum; the convergence of the S-Map
in Euclidean metric is still an open question. On the other hand, the batch G TM
is computationally clearly heavier per epoch than the S-Map, while the S-Map is
somewhat heavier than the SOM.

The SOM has an impressive record of proven applications in a variety of different
tasks, and much more experimenting is needed for any alternative method to reach
the same level of practicality. SOM is also the basic bottom-up procedure of self­
organization in the sense that it starts from a minimum of functional principles
realizable in parallel neural networks. This makes it hard to analyze, however.
A probabilistic approach like the GTM stems from the opposite point of view by
emphasizing the statistical model, but as a trade-off, the resulting algorithm may
not share all the desirable properties of the SOM. Our new approach, the S-map,
seems to have succeeded in inheriting the strong self-organization capability of the
SOM, while offering a sound probabilistic interpretation like the GTM.

References

[1] T. Kohonen, Self-Organizing Maps. Springer Series in Information Sciences 30,
Berlin Heidelberg New York: Springer, 1995.

[2] T. Kohonen, E. Oja, O. Simula, A. Visa, and J. Kangas, "Engineering applica­
tions of the self-organizing map," Proceedings of the IEEE, vol. 84, pp. 1358-
1384, Oct. 1996.

[3] C. M. Bishop, M. Svensen, and C. K. I. Williams, "GTM: A principled alterna­
tive to the self-organizing map," in Advances in Neural Information Processing
Systems (to appear) (M. C. Mozer, M. I. Jordan, and T. Petche, eds.), vol. 9,
MIT Press, 1997.

[4] A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from in­
complete data via the EM algorithm," Journal of the Royal Statistical Society,
vol. B 39, no. 1, pp. 1-38, 1977.

[5] S. P. Luttrell, "Code vector density in topographic mappings," Memorandum
4669, Defense Research Agency, Malvern, UK, 1992.

[6] T. M. Heskes and B. Kappen, "Error potentials for self-organization," in Pro­
ceedings of the International Conference on Neural Networks (ICNN'99), vol. 3,
(Piscataway, New Jersey, USA), pp. 1219-1223, IEEE Neural Networks Coun­
cil, Apr. 1993.

[7] S. P. Luttrell, "A Bayesian analysis of self-organising maps," Neural Compu­
tation, vol. 6, pp. 767-794, 1994.

[8] E. Oja, "A simplified neuron model as a principal component analyzer," Jour­
nal of Mathematical Biology, vol. 15, pp. 267-273, 1982.

[9] K. Kiviluoto, "Topology preservation in self-organizing maps," in Proceedings
of the International Conference on Neural Networks (ICNN'96), vol. 1, (Pis­
cataway, New Jersey, USA), pp. 294-299, IEEE Neural Networks Council, June
1996.

[10] M. Svensen, The GTM toolbox - user's guide. Neural Computing Research
Group / Aston University, Birmingham, UK, 1.0 ed., Oct. 1996. Available at
URL http://neural-server . aston. ac. uk/GTM/MATLAB..Impl. html.

