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Abstract 

A novel neural network model of pre-attention processing in visual­
search tasks is presented. Using displays of line orientations taken 
from Wolfe's experiments [1992], we study the hypothesis that the 
distinction between parallel versus serial processes arises from the 
availability of global information in the internal representations of 
the visual scene. The model operates in two phases. First, the 
visual displays are compressed via principal-component-analysis. 
Second, the compressed data is processed by a target detector mod­
ule in order to identify the existence of a target in the display. Our 
main finding is that targets in displays which were found exper­
imentally to be processed in parallel can be detected by the sys­
tem, while targets in experimentally-serial displays cannot . This 
fundamental difference is explained via variance analysis of the 
compressed representations, providing a numerical criterion distin­
guishing parallel from serial displays. Our model yields a mapping 
of response-time slopes that is similar to Duncan and Humphreys's 
"search surface" [1989], providing an explicit formulation of their 
intuitive notion of feature similarity. It presents a neural realiza­
tion of the processing that may underlie the classical metaphorical 
explanations of visual search. 
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1 Introduction 

This paper presents a neural-model of pre-attentive visual processing. The model 
explains why certain displays can be processed very fast, "in parallel" , while others 
require slower, "serial" processing, in subsequent attentional systems. Our approach 
stems from the observation that the visual environment is overflowing with diverse 
information, but the biological information-processing systems analyzing it have 
a limited capacity [1]. This apparent mismatch suggests that data compression 
should be performed at an early stage of perception, and that via an accompa­
nying process of dimension reduction, only a few essential features of the visual 
display should be retained. We propose that only parallel displays incorporate 
global features that enable fast target detection, and hence they can be processed 
pre-attentively, with all items (target and dis tractors) examined at once. On the 
other hand, in serial displays' representations, global information is obscure and 
target detection requires a serial, attentional scan of local features across the dis­
play. Using principal-component-analysis (peA), our main goal is to demonstrate 
that neural systems employing compressed, dimensionally reduced representations 
of the visual information can successfully process only parallel displays and not se­
rial ones. The sourCe of this difference will be explained via variance analysis of the 
displays' projections on the principal axes. 

The modeling of visual attention in cognitive psychology involves the use of 
metaphors, e.g., Posner's beam of attention [2]. A visual attention system of a 
surviving organism must supply fast answers to burning issues such as detecting 
a target in the visual field and characterizing its primary features. An attentional 
system employing a constant-speed beam of attention [3] probably cannot perform 
such tasks fast enough and a pre-attentive system is required. Treisman's feature 
integration theory (FIT) describes such a system [4]. According to FIT, features 
of separate dimensions (shape, color, orientation) are first coded pre-attentively in 
a locations map and in separate feature maps, each map representing the values of 
a particular dimension. Then, in the second stage, attention "glues" the features 
together conjoining them into objects at their specified locations. This hypothesis 
was supported using the visual-search paradigm [4], in which subjects are asked 
to detect a target within an array of distractors, which differ on given physical di­
mensions such as color, shape or orientation. As long as the target is significantly 
different from the distractors in one dimension, the reaction time (RT) is short and 
shows almost no dependence on the number of distractors (low RT slope). This 
result suggests that in this case the target is detected pre-attentively, in parallel. 
However, if the target and distractors are similar, or the target specifications are 
more complex, reaction time grows considerably as a function of the number of 
distractors [5, 6], suggesting that the displays' items are scanned serially using an 
attentional process. 

FIT and other related cognitive models of visual search are formulated on the con­
ceptual level and do not offer a detailed description of the processes involved in 
transforming the visual scene from an ordered set of data points into given values 
in specified feature maps. This paper presents a novel computational explanation 
of the source of the distinction between parallel and serial processing, progressing 
from general metaphorical terms to a neural network realization. Interestingly, we 
also come out with a computational interpretation of some of these metaphorical 
terms, such as feature similarity. 
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2 The Model 

We focus our study on visual-search experiments of line orientations performed by 
Wolfe et. al. [7], using three set-sizes composed of 4, 8 and 12 items. The number of 
items equals the number of dis tractors + target in target displays, and in non-target 
displays the target was replaced by another distractor, keeping a constant set-size. 
Five experimental conditions were simulated: (A) - a 20 degrees tilted target among 
vertical distractors (homogeneous background). (B) - a vertical target among 20 
degrees tilted distractors (homogeneous background). (C) - a vertical target among 
heterogeneous background ( a mixture of lines with ±20, ±40 , ±60 , ±80 degrees 
orientations). (E) - a vertical target among two flanking distractor orientations (at 
±20 degrees), and (G) - a vertical target among two flanking distractor orientations 
(±40 degrees). The response times (RT) as a function of the set-size measured by 
Wolfe et. al. [7] show that type A, Band G displays are scanned in a parallel 
manner (1.2, 1.8,4.8 msec/item for the RT slopes), while type C and E displays are 
scanned serially (19.7,17.5 msec/item). The input displays of our system were pre­
pared following Wolfe's prescription: Nine images of the basic line orientations were 
produced as nine matrices of gray-level values. Displays for the various conditions 
of Wolfe's experiments were produced by randomly assigning these matrices into 
a 4x4 array, yielding 128x100 display-matrices that were transformed into 12800 
display-vectors. A total number of 2400 displays were produced in 30 groups (80 
displays in each group): 5 conditions (A, B, C, E, G ) x target/non-target x 3 
set-sizes (4,8, 12). 

Our model is composed of two neural network modules connected in sequence as 
illustrated in Figure 1: a peA module which compresses the visual data into a set 
of principal axes, and a Target Detector (TD) module. The latter module uses the 
compressed data obtained by the former module to detect a target within an array 
of distractors. The system is presented with line-orientation displays as described 
above. 
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Figure 1: General architecture of the model 

For the PCA module we use the neural network proposed by Sanger, with the 
connections' values updated in accordance with his Generalized Hebbian Algorithm 
(GHA) [8]. The outputs of the trained system are the projections of the display­
vectors along the first few principal axes, ordered with respect to their eigenvalue 
magnitudes. Compressing the data is achieved by choosing outputs from the first 
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few neurons (maximal variance and minimal information loss). Target detection in 
our system is performed by a feed-forward (FF) 3-layered network, trained via a 
standard back-propagation algorithm in a supervised-learning manner. The input 
layer of the FF network is composed of the first eight output neurons of the peA 
module. The transfer function used in the intermediate and output layers is the 
hyperbolic tangent function. 

3 Results 

3.1 Target Detection 

The performance of the system was examined in two simulation experiments. In 
the first, the peA module was trained only with "parallel" task displays, and in the 
second, only with "serial" task displays. There is an inherent difference in the ability 
of the model to detect targets in parallel versus serial displays . In parallel task 
conditions (A, B, G) the target detector module learns the task after a comparatively 
small number (800 to 2000) of epochs, reaching performance level of almost 100%. 
However, the target detector module is not capable of learning to detect a target 
in serial displays (e, E conditions) . Interestingly, these results hold (1) whether 
the preceding peA module was trained to perform data compression using parallel 
task displays or serial ones, (2) whether the target detector was a linear simple 
perceptron, or the more powerful, non-linear network depicted in Figure 1, and (3) 
whether the full set of 144 principal axes (with non-zero eigenvalues) was used. 

3.2 Information Span 

To analyze the differences between parallel and serial tasks we examined the eigen­
values obtained from the peA of the training-set displays. The eigenvalues of 
condition B (parallel) displays in 4 and 12 set-sizes and of condition e (serial-task) 
displays are presented in Figure 2. Each training set contains a mixture of target 
and non-target displays. 
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Figure 2: Eigenvalues spectrum of displays with different set-sizes, for parallel and 
serial tasks. Due to the sparseness of the displays (a few black lines on white 
background), it takes only 31 principal axes to describe the parallel training-set in 
full (see fig 2a. Note that the remaining axes have zero eigenvalues, indicating that 
they contain no additional information.), and 144 axes for the serial set (only the 
first 50 axes are shown in fig 2b). 
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As evident, the eigenvalues distributions of the two display types are fundamentally 
different: in the parallel task, most of the eigenvalues "mass" is concentrated in the 
first few (15) principal axes, testifying that indeed, the dimension of the parallel 
displays space is quite confined. But for the serial task, the eigenvalues are dis­
tributed almost uniformly over 144 axes. This inherent difference is independent of 
set-size: 4 and 12-item displays have practically the same eigenvalue spectra. 

3.3 Variance Analysis 

The target detector inputs are the projections of the display-vectors along the first 
few principal axes. Thus, some insight to the source of the difference between 
parallel and serial tasks can be gained performing a variance analysis on these 
projections. The five different task conditions were analyzed separately, taking a 
group of 85 target displays and a group of 85 non-target displays for each set-size. 
Two types of variances were calculated for the projections on the 5th principal axis: 
The "within groups" variance, which is a measure of the statistical noise within 
each group of 85 displays, and the "between groups" variance, which measures the 
separation between target and non-target groups of displays for each set-size. These 
variances were averaged for each task (condition), over all set-sizes. The resulting 
ratios Q of within-groups to between-groups standard deviations are: QA = 0.0259, 
QB = 0.0587 ,and Qa = 0.0114 for parallel displays (A, B, G), and QE = 0.2125 
Qc = 0.771 for serial ones (E, C). 

As evident, for parallel task displays the Q values are smaller by an order of mag­
nitude compared with the serial displays, indicating a better separation between 
target and non-target displays in parallel tasks. Moreover, using Q as a criterion 
for parallel/serial distinction one can predict that displays with Q < < 1 will be 
processed in parallel, and serially otherwise, in accordance with the experimental 
response time (RT) slopes measured by Wolfe et. al. [7]. This differences are further 
demonstrated in Figure 3, depicting projections of display-vectors on the sub-space 
spanned by the 5, 6 and 7th principal axes. Clearly, for the parallel task (condition 
B), the PCA representations of the target-displays (plus signs) are separated from 
non-target representations (circles), while for serial displays (condition C) there is 
no such separation. It should be emphasized that there is no other principal axis 
along which such a separation is manifested for serial displays. 
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Figure 3: Projections of display-vectors on the sub-space spanned by the 5, 6 and 
7th principal axes. Plus signs and circles denote target and non-target display­
vectors respectively, (a) for a parallel task (condition B), and (b) for a serial task 
(condition C). Set-size is 8 items. 
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While Treisman and her co-workers view the distinction between parallel and se­
rial tasks as a fundamental one, Duncan and Humphreys [5] claim that there is 
no sharp distinction between them, and that search efficiency varies continuously 
across tasks and conditions. The determining factors according to Duncan and 
Humphreys are the similarities between the target and the non-targets (T-N sim­
ilarities) and the similarities between the non-targets themselves (N-N similarity). 
Displays with homogeneous background (high N-N similarity) and a target which is 
significantly different from the distractors (low T-N similarity) will exhibit parallel, 
low RT slopes, and vice versa. This claim was illustrated by them using a qualitative 
"search surface" description as shown in figure 4a. Based on results from our vari­
ance analysis, we can now examine this claim quantitatively: We have constructed 
a "search surface", using actual numerical data of RT slopes from Wolfe's exper­
iments, replacing the N-N similarity axis by its mathematical manifestation, the 
within-groups standard deviation, and N-T similarity by between-groups standard 
deviation 1. The resulting surface (Figure 4b) is qualitatively similar to Duncan and 
Humphreys's. This interesting result testifies that the PCA representation succeeds 
in producing a viable realization of such intuitive terms as inputs similarity, and is 
compatible with the way we perceive the world in visual search tasks. 
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Figure 4: RT rates versus: (a) Input similarities (the search surface, reprinted from 
Duncan and Humphreys, 1989). (b) Standard deviations (within and between) of 
the PCA variance analysis. The asterisks denote Wolfe's experimental data. 

4 Summary 

In this work we present a two-component neural network model of pre-attentional 
visual processing. The model has been applied to the visual search paradigm per­
formed by Wolfe et. al. Our main finding is that when global-feature compression 
is applied to visual displays, there is an inherent difference between the representa­
tions of serial and parallel-task displays: The neural network studied in this paper 
has succeeded in detecting a target among distractors only for displays that were 
experimentally found to be processed in parallel. Based on the outcome of the 

1 In general, each principal axis contains information from different features, which may 
mask the information concerning the existence of a target. Hence, the first principal axis 
may not be the best choice for a discrimination task. In our simulations, the 5th axis 
for example, was primarily dedicated to target information, and was hence used for the 
variance analysis (obviously, the neural network uses information from all the first eight 
principal axes). 
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variance analysis performed on the PCA representations of the visual displays, we 
present a quantitative criterion enabling one to distinguish between serial and par­
allel displays. Furthermore, the resulting 'search-surface' generated by the PCA 
components is in close correspondence with the metaphorical description of Duncan 
and Humphreys. 

The network demonstrates an interesting generalization ability: Naturally, it can 
learn to detect a target in parallel displays from examples of such displays. However, 
it can also learn to perform this task from examples of serial displays only! On the 
other hand, we find that it is impossible to learn serial tasks, irrespective of the 
combination of parallel and serial displays that are presented to the network during 
the training phase. This generalization ability is manifested not only during the 
learning phase, but also during the performance phase; displays belonging to the 
same task have a similar eigenvalue spectrum, irrespective of the actual set-size of 
the displays, and this result holds true for parallel as well as for serial displays. 

The role of PCA in perception was previously investigated by Cottrell [9], designing 
a neural network which performed tasks as face identification and gender discrim­
ination. One might argue that PCA, being a global component analysis is not 
compatible with the existence of local feature detectors (e.g. orientation detectors) 
in the cortex. Our work is in line with recent proposals [10J that there exist two 
pathways for sensory input processing: A fast sub-cortical pathway that contains 
limited information, and a slow cortical pathway which is capable of providing richer 
representations of the stimuli. Given this assumption this paper has presented the 
first neural realization of the processing that may underline the classical metaphor­
ical explanations involved in visual search. 

References 

[1] J. K. Tsotsos. Analyzing vision at the complexity level. Behavioral and Brain 
Sciences, 13:423-469, 1990. 

[2J M. I. Posner, C. R. Snyder, and B. J. Davidson. Attention and the detection 
of signals. Journal of Experimental Psychology: General, 109:160-174, 1980. 

[3J Y. Tsal. Movement of attention across the visual field. Journal of Experimental 
Psychology: Human Perception and Performance, 9:523-530, 1983. 

[4] A. Treisman and G. Gelade. A feature integration theory of attention. Cognitive 
Psychology, 12:97-136,1980. 

[5] J. Duncan and G. Humphreys. Visual search and stimulus similarity. Psycho­
logical Review, 96:433-458, 1989. 

[6] A. Treisman and S. Gormican. Feature analysis in early vision: Evidence from 
search assymetries. Psychological Review, 95:15-48, 1988. 

[7] J . M. Wolfe, S. R. Friedman-Hill, M. I. Stewart, and K. M. O'Connell. The 
role of categorization in visual search for orientation. Journal of Experimental 
Psychology: Human Perception and Performance, 18:34-49, 1992. 

[8] T. D. Sanger. Optimal unsupervised learning in a single-layer linear feedfor­
ward neural network. Neural Network, 2:459-473, 1989. 

[9] G. W. Cottrell. Extracting features from faces using compression networks: 
Face, identity, emotion and gender recognition using holons. Proceedings of the 
1990 Connectionist Models Summer School, pages 328-337, 1990. 

[10] J. L. Armony, D. Servan-Schreiber, J . D. Cohen, and J. E. LeDoux. Computa­
tional modeling of emotion: exploration through the anatomy and physiology 
of fear conditioning. Trends in Cognitive Sciences, 1(1):28-34, 1997. 


