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Abstract 

This paper describes some of the interactions of model learning 
algorithms and planning algorithms we have found in exploring 
model-based reinforcement learning. The paper focuses on how lo­
cal trajectory optimizers can be used effectively with learned non­
parametric models. We find that trajectory planners that are fully 
consistent with the learned model often have difficulty finding rea­
sonable plans in the early stages of learning. Trajectory planners 
that balance obeying the learned model with minimizing cost (or 
maximizing reward) often do better, even if the plan is not fully 
consistent with the learned model. 

1 INTRODUCTION 

We are exploring the use of nonparametric models in robot learning (Atkeson et al., 
1997b; Atkeson and Schaal , 1997). This paper describes the interaction of model 
learning algorithms and planning algorithms, focusing on how local trajectory opti­
mization can be used effectively with nonparametric models in reinforcement learn­
ing. We find that trajectory optimizers that are fully consistent with the learned 
model often have difficulty finding reasonable plans in the early stages of learning . 
The message of this paper is that a planner should not be entirely consistent with 
the learned model during model-based reinforcement learning. Trajectory optimiz­
ers that balance obeying the learned model with minimizing cost (or maximizing 
reward) often do better, even if the plan is not fully consistent with the learned 
model: 



Nonparametric Model-Based Reinforcement Learning 1009 

A '~ ~ .--/ ~ - -1"- '\ \ - / ~ ./ ----e L V 2\ \ '\ V V '\ 
[i V II '\\ l\ If \ 

( ) + 

\ \ i\ ) \ ."" / / 
\ \ I"" ./ V \ ~ I'---" / 
\ \ l"" ~ ~ I"" V 
\ \ !"" ~ ~ ~ ~ it 

Figure 1: A: Planning in terms of trajectory segments. B: Planning in terms of 
trajectories all the way to a goal point . 

Two kinds of reinforcement learning algorithms are direct (non-model-based) and 
indirect (model-based) . Direct reinforcement learning algorithms learn a policy or 
value function without explicitly representing a model of the controlled system (Sut­
ton et al. , 1992) . Model-based approaches learn an explicit model of the system si­
multaneously with a value function and policy (Sutton, 1990 , 1991a,b; Barto et al. , 
1995; Kaelbling et al. , 1996) . We will focus on model-based reinforcement learning, 
in which the learner uses a planner to derive a policy from a learned model and an 
optimization criterion . 

2 CONSISTENT LOCAL PLANNING 

An efficient approach to dynamic programming, a form of global planning, is to use 
local trajectory optimizers (Atkeson, 1994) . These local planners find a plan for 
each starting point in a grid in the state space. Figure 1 compares the output of 
a traditional cell based dynamic programming process with the output of a plan­
ner based on integrating local plans. Traditional dynamic programming generates 
trajectory segments from each cell to neighboring cells, while the planner we use 
generates entire trajectories. These locally optimal trajectories have local policies 
and local models of the value function along the trajectories (Dyer and McReynolds, 
1970; Jacobson and Mayne, 1970). The locally optimal trajectories are made con­
sistent with their neighbors by using the local value function to predict the value 
of a neighboring trajectory. If all the local value functions are consistent with their 
neighbors the aggregate value function is a unique solution to the Bellman equation 
and the corresponding trajectories and policy are globally optimal. We would like 
any local planning algorithm to produce a local model of the value function so we 
can perform this type of consistency checking. We would also like a local policy 
from the local planner, so we can respond to disturbances and modeling errors. 

Differential dynamic programming is a local planner that has these characteris­
tics (Dyer and McReynolds. 1970; Jacobson and Mayne, 1970). Differential dy­
namic programming maintains a local quadratic model of the value function along 
the current best trajectory x* (t): 

V (x,t) = Vo(t) + Vx(t)(x - x*(t))T + 0.5(x - x*(t))TVxx(t)(x - x*(t)) (1) 
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as well as a local linear model of the corresponding policy: 

U(X,t) = u*(t) + K(t)(x - x*(t)) (2) 

u(x, t) is the local policy at time t, the control signal u as a function of state x. 
u * (t) is the model's estimate of the control signal necessary to follow the current 
best trajectory x*(t). K(t) are the feedback gains that alter the control signals in 
response to deviations from the current best trajectory. These gains are also the 
first derivative of the policy along the current best trajectory. 

The first phase of each optimization iteration is to apply the current local policy 
to the learned model, integrating the modeled dynamics forward in time and seeing 
where the simulated trajectory goes. The second phase of the differential dynamic 
programming approach is to calculate the components of the local quadratic model 
of the value function at each point along the trajectory: the constant term Vo (t), the 
gradient Vx (t), and the Hessian Vxx (t). These terms are constructed by integrating 
backwards in time along the trajectory. The value function is used to produce a 
new policy, which is represented using a new x*(t), u*(t), and K(t). 

The availability of a local value function and policy is an attractive feature of 
differential dynamic programming. However, we have found several problems when 
applying this method to model-based reinforcement learning with nonparametric 
models: 

1. Methods that enforce consistency with the learned model need an initial 
trajectory that obeys that model, which is often difficult to produce. 

2. The integration of the learned model forward in time often blows up when 
the learned model is inaccurate or when the plant is unstable and the cur­
rent policy fails to stabilize it. 

3. The backward integration to produce the value function and a correspond­
ing policy uses derivatives of the learned model, which are often quite inac­
curate in the early stages of learning, producing inaccurate value function 
estimates and ineffective policies. 

3 INCONSISTENT LOCAL PLANNING 

To avoid the problems of consistent local planners, we developed a trajectory opti­
mization approach that does not integrate the learned model and does not require 
full consistency with the learned model. Unfortunately, the price of these modifi­
cations is that the method does not produce a value function or a policy, just a 
trajectory (x(t), u(t)). To allow inconsistency with the learned model, we represent 
the state history x(t) and the control history u(t) separately, rather than calculate 
x(t) from the learned model and u(t). We also modify the original optimization 
criterion C = Lk C(Xk, Uk) by changing the hard constraint that Xk+1 = f(Xk' Uk) 
on each time step into a soft constraint: 

Cnew = L [C(Xk' Uk) +~IXk+1-f(Xk,Uk)12] (3) 
k 

C(Xk' Uk) is the one step cost in the original optimization criterion. ~ is the penalty 
on the trajectory being inconsistent with the learned model Xk+1 = f(Xk' Uk). 
IXk +1 - f (Xk' Uk) I is the magnitude of the mismatch of the trajectory and the model 
prediction at time step k in the trajectory. ~ provides a way to control the amount 
of inconsistency. A small ~ reflects lack of confidence in the model, and allows 
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Figure 2: The 
SARCOS robot 
arm with a pen­
dulum gripped in 
the hand. The 
pendulum aXIS 
is aligned with 
the fingers and 
with the fore­
arm in this arm 
configuration. 

the optimized trajectory to be inconsistent with the model in favor of reducing 
C(Xk, Uk)' A large). reflects confidence in the model, and forces the optimized tra­
jectory to be more consistent with the model. ). can increase with time or with the 
number of learning trials . If we use a model that estimates the confidence level of 
a prediction, we can vary). for each lookup based on Xk and Uk. Locally weighted 
learning techniques provide exactly this type of local confidence estimate (Atkeson 
et al., 1997a) . 

Now that we are not integrating the trajectory we can use more compact repre­
sentations of the trajectory, such as splines (Cohen, 1992) or wavelets (Liu et al., 
1994). We no longer require that Xk+l = f(Xk, Uk), which is a condition difficult to 
fulfill without having x and u represented as independent values on each time step. 
We can now parameterize the trajectory using the spline knot points, for example. 
In this work we used B splines (Cohen, 1992) to represent the trajectory. Other 
choices for spline basis functions would probably work just as well. We can use any 
nonlinear programming or function optimization method to minimize the criterion 
in Eq. 3. In this work we used Powell's method (Press et al., 1988) to optimize the 
knot points, a method which is convenient to use but not particularly efficient. 

4 IMPLEMENTATION ON AN ACTUAL ROBOT 

Both local planning methods work well with learned parametric models. However , 
differential dynamic programming did not work at all with learned nonparametric 
models, for reasons already discussed. This section describes how the inconsistent 
local planning method was used in an application of model-based reinforcement 
learning: robot learning from demonstration using a pendulum swing up task (Atke­
son and Schaal, 1997). The pendulum swing up task is a more complex version of 
the pole or broom balancing task (Spong, 1995) . The hand holds the axis of the 
pendulum, and the pendulum rotates about this hinge in an angular movement 
(Figure 2). Instead of starting with the pendulum vertical and above its rotational 
joint, the pendulum is hanging down from the hand, and the goal of the swing up 
task is to move the hand so that the pendulum swings up and is then balanced 
in the inverted position . The swing up task was chosen for study because it is a 
difficult dynamic maneuver and requires practice for humans to learn, but it is easy 
to tell if the task is successfully executed (at the end of the task the pendulum is 
balanced upright and does not fall down) . 

We implemented learning from demonstration on a hydraulic seven degree of free-
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Figure 3: The hand and pendulum motion during robot learning from demonstra­
tion using a nonparametric model. 

dom anthropomorphic robot arm (SARCOS Dextrous Arm located at ATR, Fig­
ure 2). The robot observed its own performance with the same stereo vision system 
that was used to observe the human demonstrations. 

The robot observed a human swinging up a pendulum using a horizontal hand 
movement (dotted line in Figure 3) . The most obvious approach to learning from 
demonstration is to have the robot imitate the human motion, by following the 
human hand trajectory. The dashed lines in Figures 3 show the robot hand motion 
as it attempts to follow the human demonstration of the swing up task, and the 
corresponding pendulum angles. Because of differences in the task dynamics for 
the human and for the robot, this direct imitation failed to swing the pendulum 
up, as the pendulum did not get even halfway up to the vertical position, and then 
oscillated about the hanging down position. 

The approach we used was to apply a planner to finding a swing up trajectory 
that worked for the robot, based on learning both a model and a reward function 
and using the human demonstration to initialize the planning process. The data 
collected during the initial imitation trial and subsequent trials was used to build 
a model. Nonparametric models were constructed using locally weighted learning 
as described in (Atkeson et al., 1997a) . These models did not use knowledge of the 
model structure but instead assumed a general relationship: 

(4) 

where () is the pendulum angle and x is the hand position. Training data from 
the demonstrations was stored in a database, and a local model was constructed 
to answer each query. Meta-parameters such as distance metrics were tuned using 
cross validation on the training set. For example, cross validation was able to 
quickly establish that hand position and velocity (x and x) played an insignificant 
role in predicting future pendulum angular velocities. 

The planner used a cost function that penalizes deviations from the demonstration 
trajectory sampled at 60H z: 

C(Xk, Uk) = (Xk - X~)T(Xk - X~) + uluk (5) 
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where the state is x = ((J, il, x , x), xd is the demonstrated motion, k is the sample 
index, and the control is u = (x). Equation 3 was optimized using B splines to 
represent x and u. The knot points for x and u were initially separately optimized 
to minimize 

(6) 

and 
(7) 

The tolerated inconsistency, ). was kept constant during a set of trials and set 
at values ranging from 100 to 100000. The exact value of ). did not make much 
difference. Learning failed when). was set to zero , as there was no way for the 
learned model to affect the plan. The planning process failed when ). was set too 
high , enforcing the learned model too strongly. 

The next attempt got the pendulum up a little more. Adding this new data to the 
database and replanning resul ted in a movement that succeeded (trial 3 in Figure 3). 
The behavior shown in Figure 3 is quite repeatable. The balancing behavior at the 
end of the trial is learned separately and continues for several minutes, at which 
point the trial is automatically terminated (Schaal, 1997). 

5 DISCUSSION AND CONCLUSION 

We applied locally weighted regression (Atkeson et aI. , 1997a) in an attempt to avoid 
the structural modeling errors of idealized parametric models during model-based 
reinforcement learning, and also to see if a priori knowledge of the structure of the 
task dynamics was necessary. In an exploration of the swingup task, we found that 
these nonparametric models required a planner that ignored the learned model to 
some extent. The fundamental reason for this is that planners amplify modeling 
error. Mechanisms for this amplification include: 

• The planners take advantage of any modeling error to reduce the cost of 
the planned trajectory, so the planning process seeks out modeling error 
that reduces apparent cost . 

• Some planners use derivatives of the model, which amplifies any noise in 
the model. 

Models that support fast learning will have errors and noise. For example , in order 
to learn a model of the complexity necessary to accurately model the full robot 
dynamics between the commanded and actual hand accelerations a large amount 
of data is required, independent of modeling technique. The input would be 21 
dimensional (robot state and command) ignoring actuator dynamics. Because there 
are few robot trials during learning, there is not enough data to make such a model 
even just in the vicinity of a successful trajectory. If it was required that enough 
data is collected during learning to make an accurate model. robot learning would 
be greatly slowed down. 

One solution to this error amplification is to bias the nonparametric modeling tools 
to oversmooth the data. This reduces the benefit of nonparametric modeling, and 
also ignores the true learned model to some degree. Our solution to this problem 
is to introduce a controlled amount of inconsistency with the learned model into 
the planning process. The control parameter). is explicit and can be changed as a 
function of time, amount of data, or as a function of confidence in the model at the 
query point. 
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