
Enhancing Q-Learning for
Optimal Asset Allocation

Ralph Neuneier
Siemens AG, Corporate Technology

D-81730 MUnchen, Germany
Ralph.Neuneier@mchp.siemens.de

Abstract
This paper enhances the Q-Iearning algorithm for optimal asset alloca­
tion proposed in (Neuneier, 1996 [6]). The new formulation simplifies
the approach by using only one value-function for many assets and al­
lows model-free policy-iteration. After testing the new algorithm on
real data, the possibility of risk management within the framework of
Markov decision problems is analyzed. The proposed methods allows
the construction of a multi-period portfolio management system which
takes into account transaction costs, the risk preferences of the investor,
and several constraints on the allocation.

1 Introduction
Asset allocation and portfolio management deal with the distribution of capital to various
investment opportunities like stocks, bonds, foreign exchanges and others. The aim is to
construct a portfolio with a maximal expected return for a given risk level and time horizon
while simultaneously obeying institutional or legally required constraints. To find such an
optimal portfolio the investor has to solve a difficult optimization problem consisting of
two phases [4]. First, the expected yields together with a certainty measure has to be pre­
dicted. Second, based on these estimates, mean-variance techniques are typically applied
to find an appropriate fund allocation. The problem is further complicated if the investor
wants to revise herlhis decision at every time step and if transaction costs for changing the
allocations must be considered.

disturbanc ies -
,--- financial market

investmen ts j return

'---- investor

I---

rates, prices

I---

Markov Decision Problem:
Xt = ($t, J(t}' state: market $t

at = p(xt)
p(Xt+llx d
r(Xt, at, $t+l)

and portfolio J(t

policy p, actions
transition probabilities
return function

Within the framework of Markov Decision Problems, MDPs, the modeling phase and the
search for an optimal portfolio can be combined (fig. above). Furthermore, transaction
costs, constraints, and decision revision are naturally integrated. The theory ofMDPs for­
malizes control problems within stochastic environments [1] . If the discrete state space is
small and if an accurate model of the system is available, MDPs can be solved by con-

Enhancing Q-Leaming for Optimal Asset Allocation 937

ventional Dynamic Programming, DP. On the other extreme, reinforcement learning meth­
ods using function approximator and stochastic approximation for computing the relevant
expectation values can be applied to problems with large (continuous) state spaces and
without an appropriate model available [2, 10].

In [6], asset allocation is fonnalized as a MDP under the following assumptions which
clarify the relationship between MDP and portfolio optimization:

1. The investor may trade at each time step for an infinite time horizon.
2. The investor is not able to influence the market by her/his trading.
3. There are only two possible assets for investing the capital.
4. The investor has no risk aversion and always invests the total amount.

The reinforcement algorithm Q-Learning, QL, has been tested on the task to invest liquid
capital in the Gennan stock market DAX, using neural networks as value function approx­
imators for the Q-values Q(x, a). The resulting allocation strategy generated more profit
than a heuristic benchmark policy [6].

Here, a new fonnulation of the QL algorithm is proposed which allows to relax the third
assumption. Furthennore, in section 3 the possibility of risk control within the MDP frame­
work is analyzed which relaxes assumption four.

2 Q-Learning with uncontrollable state elements
This section explains how the QL algorithm can be simplified by the introduction of an
artificial detenninistic transition step. Using real data, the successful application of the
new algorithm is demonstrated.

2.1 Q-Leaming for asset allocation
The situation of an investor is fonnalized at time step t by the state vector Xt = ($t, Kt),
which consists of elements $t describing the financial market (e. g. interest rates, stock
indices), and of elements K t describing the investor's current allocation of the capital
(e. g. how much capital is invested in which asset). The investor's decision at for a new allo­
cation and the dynamics on the financial market let the state switch to Xt+l = ($t+l' K t+1)

according to the transition probability p(Xt+lIXto at). Each transition results in an imme­
diate return rt = r(xt, Xt+l. at} which incorporates possible transaction costs depending
on the decision at and the change of the value of K t due to the new values of the as­
sets at time t + 1. The aim is to maximize the expected discounted sum of the returns,
V* (x) = E(2::~o It rt Ixo = x). by following an optimal stationary policy J.l. (xt) = at.
For a discrete finite state space the solution can be stated as the recursive Bellman equation:

V· (xd = m:-x [L p(xt+llxt, a)rt + ~I L p(xt+llxt. a) V* (Xt+l)] . (1)
Xt+l X.+l

A more useful fonnulationdefines a Q-function Q·(x, a) of state-action pairs (Xt. at),

to allow the application ofan iterative stochastic approximation scheme, called Q-Learning
[11]. The Q-value Q*(xt,a,) quantifies the expected discounted sum of returns if one
executes action at in state Xt and follows an optimal policy thereafter, i. e. V* (xt) =
maxa Q* (Xt, a). Observing the tuple (Xt, Xt+l, at, rd, the tabulated Q-values are updated

938 R. Neuneier

in the k + 1 iteration step with learning rate 17k according to:

It can be shown, that the sequence of Q k converges under certain assumptions to Q* . If the
Q-values Q* (x, a) are approximated by separate neural networks with weight veCtor w a

for different actions a, Q* (x, a) ~ Q(x; wa) , the adaptations (called NN-QL) are based on
the temporal differences dt :

dt := r(xt, at , Xt+l) + ,),maxQ(Xt+l; w~) - Q(Xt; wZ t) ,
aEA

Note, that although the market dependent part $t of the state vector is independent of the
investor's decisions, the future wealth Kt+l and the returns rt are not. Therefore, asset
allocation is a multi-stage decision problem and may not be reduced to pure prediction
if transaction costs must be considered. On the other hand, the attractive feature that the
decisions do not influence the market allows to approximate the Q-values using historical
data of the financial market. We need not to invest real money during the training phase.

2.2 Introduction of an artificial deterministic transition
Now, the Q-values are reformulated in order to make them independent of the actions cho­
sen at the time step t. Due to assumption 2, which states that the investor can not influence
the market by the trading decisions, the stochastic process of the dynamics of $t is an un­
controllable Markov chain. This allows the introduction of a deterministic intermediate
step between the transition from Xt to Xt+1 (see fig. below). After the investor has "ho­
sen an action at, the capital K t changes to K: because he/she may have paid transaction
costs Ct = c(Kt, at) and K; reflects the new allocation whereas the state of the market,
$t, remains the same. Because the costs Ct are known in advance, this transition is deter­
ministic and controllable. Then, the market switches stochastically to $t+1 and generates
the immediate return r~ = r' ($t, K:, $t+1) i.e., rt = Ct + r~ . The capital changes to
Kt+1 = r~ + K;. This transition is uncontrollable by the investor. V* ($, K) = V* (x) is
now computed using the costs Ct and returns r~ (compare also eq. 1)

tn.sid .. , ... torml.lode 110<'_ t+l

St St St+l

K t
at

K' Kt+l t

Ct r:
Q(SbK~)

Defining Q* ($t, Kn as the Q-values of the intermediate time step

Q* ($t , K:) E [r' ($t , K: , $t+1) + ')'V* ($t+1 ' Kt+d]

Enhancing Q-Leaming for Optimal Asset Allocation

gives rise to the optimal value function and policy (time indices are suppressed),

V* ($, K) = max[c(K, a) + Q* ($, K')],
a

Jl*($, K) = argmax[c(K, a) + Q*($, K')].
a

Defining the temporal differences dt for the approximation Q k as

dt := r' ($t, K:, $t+1) + ,max[c(Kt+b a) + Q(k)($t+1, K:+ 1)] - Q(k)($t, KD
a

leads to the update equations for the Q-values represented by tables or networks:

QLU: Q(k+l)($t,K;) Q(k)($t, K:) + 1/kdt ,

NN-QLU: w(k+l) w(k) + 1/kdtV'Q($, K'; w(k») .

939

The simplification is now obvious, because (NN-)QLU only needs one table or neural net­
work no matter how many assets are concerned. This may lead to a faster convergence and
better results. The training algorithm boils down to the iteration of the following steps:

QLU for optimal investment decisions

1. draw randomly patterns $t, $t+ 1 from the data set,
draw randomly an asset allocation K:

2. for all possible actions a:
compute rf, c(Kt+b a), Q(k)($t+b K:+I)

3. compute temporal difference dt

4. compute new value Q(k+1)($t, Kn resp. Q($t, K:; w(k+1»)

5. stop, ifQ-values have converged, otherwise go to 1

Since QLU is equivalent to Q-Leaming, QLU converges to the optimal Q-values under the
same conditions as QL (e. g [2]). The main advantage of (NN-)QLU is that this algorithm
only needs one value function no matter how many assets are concerned and how fine the
grid of actions are:

Q*(($,K),a) = c(K,a) + Q*($,K').

Interestingly, the convergence to an optimal policy of QLU does not rely on an explicit
exploration strategy because the randomly chosen capital K: in step 1 simulates a random
action which was responsible for the transition from K t . In combination with the randomly
chosen market state $t, a sufficient exploration of the action and state space is guaranteed.

2.3 M\ldel-free policy-iteration
The refonnulation also allows the design of a policy iteration algorithm by alternating a
policy evaluation phase (PE) and a policy improvement (PI) step. Defining the temporal
differences dt for the approximation Q~I of the policy JlI in the k step ofPE

dt := r' ($t, K;, $t+d + ,[c(Kt+I, JlI ($t+l, K t+1)) + Q(k) (K:+ 1 , $t+d] - Q(k)(K;, $t}

leads to the following update equation for tabulated Q-values

Q(k+l)($ K') Q(k)($ K") d JJI t, t = IJ.I t, t + 1/k t·

940 R. Neuneier

After convergence, one can improve the policy J-li to J-lI+l by

J-l1+I($t, Kt} = arg max[c(Kt , a) + QJ.'I ($t, KD] .
a

By alternating the two steps PE and PI, the sequence of policies [J-l1 (x)]1=0, ... converges
under the typical assumptions to the optimal policy J-l* (x) [2] .

Note, that policy iteration is normally not possible using classical QL, if one has not an
appropriate model at hand. The introduction of the detenninistic intermediate step allows
to start with an initial strategy (e. g. given by a broker), which can be subsequently opti­
mized by model-free policy iteration trained with historical data of the financial market.
Generalization to parameterized value functions is straightforward.

2.4 Experiments on the German Stock Index DAX
The NN-QLU algorithm is now tested on a real world task: assume that an investor wishes
to invest herihis capital into a portfolio of stocks which behaves like the German stock
index DAX. Herihis alternative is to keep the capital in the certain asset cash, referred to
as DM. We compare the resulting strategy with three benchmarks, namely Neuro-Fuzzy,
Buy&Hold and the naive prediction. The Buy&Hold strategy invests at the first time step
in the DAX and only sells at the end. The naive prediction invests if the past return of the
DAX has been positive and v. v. The third is based on a Neuro-Fuzzy model which was
optimized to predict the daily changes of the DAX [8]. The heuristic benchmark strategy is
then constructed by taking the sign of the prediction as a trading signal, such that a positive
prediction leads to an investment in stocks. The input vector of the Neuro-Fuzzy model,
which consists of the DAX itself and 11 other influencing market variables, was carefully
optimized for optimal prediction. These inputs also constitutes the $t part of the state vector
which describes the market within the NN-QLU algorithm. The data is split into a training
(from 2. Jan. 1986 to 31. Dec. 1994) and a test set (from 2. Jan. 1993 to 1. Aug. 1996). The
transaction costs (Ct) are 0.2% of the invested capital if K t is changed from DM to DAX,
which are realistic for financial institutions. Referring to an epoch as one loop over all
training patterns, the training proceeds as outlined in the previous section for 10000 epochs
with T}k = "'0 . 0.999k with start value "'0 = 0.05.

Table 1: Comparison of the profitability of the strategies, the number of position changes
and investments in DAX for the test (training) data.

I strategy profit I investments in DAX I position changes I
NN-QLU 1.60 (3.74) 70 (73)% 30 (29)%
N euro-Fuzzy 1.35 (1.98) 53 (53)% 50 (52)%
Naive Prediction 0.80 (1.06) 51 (51)% 51 (48)%
Buy&Hold 1.21 (1.46) 100 (100)% 0(0)%

The strategy constructed with the NN-QLU algorithm, using a neural network with 8 hid­
den neurons and a linear output, clearly beats the benchmarks. The capital at the end of the
test set (training set) exceeds the second best strategy Neuro-Fuzzy by about 18.5% (89%)
(fig. 1). One reason for this success is, that QLU changes less often the position and thus,
avoids expensive transaction costs. The Neuro-Fuzzy policy changes almost every second
day whereas NN-QLU changes only every third day (see tab. 1).

It is interesting to analyze the learning behavior during training by evaluating the strategies
ofNN-QLU after each epoch. At the beginning, the policies suggest to change almost never
or each time to invest in DAX. After some thousand epochs, these bang-bang strategies
starts to differentiate. Simultaneously, the more complex the strategies become the more
profit they generate (fig. 2).

Enhancing Q-Leaming for Optimal Asset Allocation 941

de~lopment 01 the Capital

3.5
NN-QLU

2.5

09
. '. '

o 8 NaIVe PredlCllon

1 3.94 18.96
time lime

Figure 1: Comparison of the development of the capital for the test set (left) and the training
set (right). The NN-QLU strategy clearly beats all the benchmarks.

DAX-mvestrnents In " .
r8ILm CNGf 60 days

o i

8000 10000 2000 4000 6000 8000 10000
opoehs epochs

Figure 2: Training course: percentage ofDAX investments (left), profitability measured as
the average return over 60 days on the training set (right).

3 Controlling the Variance of the Investment Strategies
3.1 Risk-adjusted MDPs
People are not only interested in maximizing the return, but also in controlling the risk of
their investments. This has been formalized in the Markowitz portfolio-selection, which
aims for an allocation with the maximal expected return for a given risk level [4]. Given a
stationary fo1icy f..L(x) with finite state space, the associated value function V JI. (x) and its
variance (T (V JI. (X)) can be defined as

V"(x) E [t. ~'r(x"I", x'+1) xo ~ xl,

E [(t. ~'r(x" p" X'+1) - V"(X)), Xo = x] .

Then, an optimal strategy f..L* (x ; ,\) for a risk-adjusted MDP (see [9], S. 410 for variance­
penalized MDPs) is

f..L*(x;,\) = argmax[VJI.(x) - ,\(T2(VJI.(x))] for'\ > O.
JI.

By variation of '\, one can construct so-called efficient portfolios which have minimal risk
for each achievable level of expected return. But in comparison to classical portfolio theory,
this approach manages multi-period portfolio management systems including transaction
costs. Furthermore, typical min-max requirements on the trading volume and other alloca­
tion constraints can be easily implemented by constraining the action space.

942 R. Neuneier

3.2 Non-linear Utility Functions
In general, it is not possible to compute (J"2 (V If. (x)) with (approximate) dynamic program­
ming or reinforcement techniques, because (J"2 (VJ.I (x)) can not be written in a recursive
Bellman equation. One solution to this problem is the use of a return function rt, which pe­
nalizes high variance. In financial analysis, the Sharpe-ratio, which relates the mean of the
single returns to their variance i. e., r/(J"(r), is often employed to describe the smoothness
of an equity curve. For example, Moody has developed a Sharpe-ratio based error function
and combines it with a recursive training procedure [5] (see also [3]). The limitation of the
Sharpe-ratio is, that it penalizes also upside volatility. For this reason, the use of an utility
function with a negative second derivative, typical for risk averse investors, seems to be
more promising. For such return functions an additional unit increase is less valuable than
the last unit increase [4]. An example is r = log (new portfolio value I old portfolio value)
which also penalizes losses much stronger than gains. The Q-function Q(x, a) may lead to
intermediate values of a* as shown in the figure below.

--~ ~ -~.--~-~ - ---'-- - '
. 1 O. " 01 \ . J ,. " " t

rtMaM change 01 the pcwtIoko I4l1A ... %

4 Conclusion and Future Work

e"I ---'--'--_~~~_

I

~"7Jr

~J
'" , . .
1 ' ''~
,_l

1II°' i
I

.0

.- ,,----.-:;----0; --;. - :i - .• -y:- - •• -~
% of l'N'8Sur'8n11n UncertlWl asset

Two improvements of Q-Ieaming have been proposed to bridge the gap between classi­
cal portfolio management and asset allocation with adaptive dynamic programming. It is
planned to apply these techniques within the framework of a European Community spon­
sored research project in order to design a decision support system for strategic asset al­
location [7). Future work includes approximations and variational methods to compute
explicitly the risk (J"2 (V If. (x)) of a policy.

References
[I J D. P. Bertsekas. Dynamic Programming and Optimal Control, vol. I. Athena Scientific, 1995.

[2] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, 1996.

[3J M. Choey and A. S. Weigend. Nonlinear trading models through Sharpe Ratio maximization.
In proc. ofNNCM'96, 1997. World Scientific.

[4J E. J. Elton and M. J. Gruber. Modern Portfolio Theory and Investment Analysis. 1995.

[5J J. Moody, L. Whu, Y. Liao, and M. Saffell. Performance Functions and Reinforcement Learning
for Trading Systems and Portfolios. Journal of Forecasting, 1998. forthcoming,

[6J R. Neuneier. Optimal asset allocation using adaptive dynamic programming. In proc. of Ad­
vances in Neural Information Processing Systems, vol. 8, 1996.

[7J R. Neuneier, H. G. Zimmermann, P. Hierve, and P. Nairn. Advanced Adaptive Asset Allocation.
EU Neuro-Demonstrator, 1997,

[8J R. Neuneier, H. G. Zimmermann, and S. Siekmann. Advanced Neuro-Fuzzy in Finance: Pre­
dicting the German Stock Index DAX, 1996. Invited presentation at ICONIP'96, Hong Kong,
availabel by email fromRalph.Neuneier@mchp.siemens.de.

[9J M. L. Puterman. Markov Decision Processes. John Wiley & Sons, 1994.

[IOJ S. P. Singh. Learning to Solve Markovian Decision Processes, CMPSCI TR 93-77, University
of Massachusetts, November 1993.

[I I J C. J. C. H. Watkins and P. Dayan. Technical Note: Q-Learning. Machine Learning: Special
Issue on Reinforcement Learning, 8,3/4:279-292, May 1992.

