
Coding of Naturalistic Stimuli by 
Auditory Midbrain Neurons 

H. Attias* and C.E. Schreinert 
Sloan Center for Theoretical Neurobiology and 

W.M. Keck Foundation Center for Integrative Neuroscience 
University of California at San Francisco 

San Francisco, CA 94143-0444 

Abstract 

It is known that humans can make finer discriminations between 
familiar sounds (e.g. syllables) than between unfamiliar ones (e.g. 
different noise segments). Here we show that a corresponding en­
hancement is present in early auditory processing stages. Based on 
previous work which demonstrated that natural sounds had robust 
statistical properties that could be quantified, we hypothesize that 
the auditory system exploits those properties to construct efficient 
neural codes. To test this hypothesis, we measure the informa­
tion rate carried by auditory spike trains on narrow-band stimuli 
whose amplitude modulation has naturalistic characteristics, and 
compare it to the information rate on stimuli with non-naturalistic 
modulation. We find that naturalistic inputs significantly enhance 
the rate of transmitted information, indicating that auditiory neu­
ral responses are matched to characteristics of natural auditory 
scenes. 

1 Natural Scene Statistics and the Neural Code 

A primary goal of hearing research is to understand how complex sounds that occur 
in natural scenes are processed by the auditory system. However, natural sounds 
are difficult to describe quantitatively and the complexity of auditory responses 
they evoke makes it hard to gain insight into their processing. Hence, most studies 
of auditory physiology are restricted to pure tones and noise stimuli, resulting in 
a limited understanding of auditory encoding. In this paper we pursue a novel 
approach to the study of natural sound encoding in auditory spike trains. Our 
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Figure 1: Left: amplitude modulation stimulus drawn from a naturalistic stimulus 
set, and the evoked spike train of an inferior colliculus neuron. Right: amplitude 
modulation from a non-naturalistic set and the evoked spike train of the same 
neuron. 

method consists of measuring statistical characteristics of natural auditory scenes, 
and incorporating them into simple stimuli in a systematic manner, thus creating 
'naturalistic' stimuli which enable us to study the encoding of natural sounds in a 
controlled fashion. The first stage of this program has been described in (Attias 
and Schreiner 1997); the second is reported below. 

Fig. 1 shows two segments of long stimuli and the corresponding spike trains of 
the same neuron, elicited by pure tones that were amplitude-modulated by these 
stimuli. While both stimuli appear to be random and to have the same mean and 
both spike trains have the same firing rate, one may observe that high and low 
amplitudes are more likely to occur in the stimulus on the left; indeed, these stimuli 
are drawn from two stimulus sets with different statistical properties. Our present 
study of auditory coding focuses on assessing the efficiency of this neural code: 
for a given stimulus set, how well can the animal reconstruct the input sound and 
discriminate between similar sound segments, based on the evoked spike train, and 
how those abilities are affected by changing the stimulus statistics. We quantify 
the discrimination capability of auditory neurons in the inferior colliculus of the cat 
using concepts from information theory (Bialek et al. 1991; Rieke et al. 1997). 

This leads to the issue of optimal coding (Atick 1992). Theoretically, given an 
auditory scene with particular statistical properties, it is possible to design an en­
coding scheme that would exploit those properties, resulting in a neural code that 
is optimal for that scene but is consequently less efficient for other scenes. Here we 
investigate the hypothesis that the auditory system uses a code that is adapted to 
natural auditory scenes. This question is addressed by comparing the discrimination 
capability of auditory neurons between sound segments drawn from a naturalistic 
stimulus set, to the one for a non-naturalistic set. 

2 Statistics of Natural Sounds 

As a first step in investigating the relation between neural responses and auditory 
inputs, we studied and quantified temporal statistics of natural auditory scenes {At­
tias and Schreiner 1997}. It is well-known that different locations on the basal mem­
brane respond selectively to different frequency components of the incoming sound 
x{t) (e.g., Pickles 1988), hence the frequency v corresponds to a spatial coordinate, 
in analogy with retinal location in vision. We therefore analyzed a large database 
of sounds, including speech, music, animal vocalizations, and background sounds, 
using various filter banks comprising 0 -10kHz. In each frequency band v, the am­
plitude a{t) ~ 0 and phase r/>{t) ofthe band-limited signal xv(t) = a{t) cos{vt+r/>{t)) 
were extracted, and the amplitude probability distribution p(a) and auto-correlation 
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Figure 2: Log-amplitude distribution in several sound ensembles. Different curves 
for a given ensemble correspond to different frequency bands. The low amplitude 
peak in the cat plot reflect abundance of silent segments. The theoretical curve p(a) 
(1) is plotted for comparison (dashed line). 

function c(r) = (a(t)a(t + r)) were computed, as well as those of the instantaneous 
frequency d¢(t)/dt. 

Those statistics were found to be nearly identical in all bands and across all ex­
amined sounds. In particular, the distribution of the log-amplitude a = log a, 
normalized to have zero mean and unit variance, could be well-fitted to the form 

p(a) = ,8 exp (,8a + Q - e.Bii+t:t) (1) 

(with normalization constants Q = -.578 and ,8 = 1.29), which should, however, be 
corrected at large amplitude (> 5a). Several examples are displayed in Fig. 1. The 
log-amplitude distribution (1) corresponds mathematically to the amplitude distri­
bution of musical instruments and vocalizations, found to be p(a) = e-a (known as 
the Laplace distribution in speech signal processing), as well as that of background 
sounds, where p(a) <X ae- a2 (which can be shown to be the band amplitude distri­
bution for a Gaussian signal). The power spectra of a(t) (Fourier transform of c(r)) 
were found to have a modified 1/ f form. 

Together with the results for ¢(t), those findings show that natural sounds are 
distinguished from arbitrary ones by robust characteristics. In the present paper 
we explore to what extent the auditory system exploits them in constructing efficient 
neural codes. Another important point made by (Attias and Schreiner 1997), as well 
as by (Ruderman and Bialek 1994) regarding visual signals, is that natural inputs 
are very often not Gaussian (e.g. (1)), unlike the signals used by conventional 
system-identification methods often applied to the nervous system. In this paper 
we use non-Gaussian stimuli to study auditory coding. 

3 Measuring the Rate of Information Transfer 

3.1 Experiment 

Based on our results for temporal statistics of natural auditory scenes, we can 
construct 'naturalistic' stimuli by starting with a simple signal and systematically 
incorporate successively more complicated characteristics of natural sounds into it. 
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We cQ.ose to use narrow-band stimuli consisting of amplitude-modulated carriers 
a(t) cos(vt) at sound frequencies v = 2 - 9kHz with no phase modulation. Focusing 
on one-point amplitude statistics, we constructed a white naturalistic amplitude 
by choosing a(t) from an exponential distribution with a cutoff, p(O ::; a ::; ae) ex: 
e-a , p(a > ae) = 0 at each time point t independently, using a cutoff modulation 
frequency of fe = 100Hz (i.e., 1 a(J ::; fe) 1= const., 1 a(J > fe) 1= 0, where a(J) is 
the Fourier transform of a{t)). We also used a non-naturalistic stimulus set where 
a(t) was chosen from a uniform distribution p(O ::; a ~ be) = 1lbe, p(a > be) = 0, 
with be adjusted so that both stimulus sets had the same mean. A short segment 
from each set is shown in Fig. 1, and the two distributions are plotted in Figs. 3,4 
(right) . 

Stimuli of 15 - 20min duration were played to ketamine-anesthetized cats. To 
minimize adaptation effects we alternated between the two sets using 10sec long 
segments. Single-unit recordings were made from the inferior colliculus (IC), a sub­
thalamic auditory processing stage (e.g., Pickles 1988). Each IC unit responds best 
to a narrow range of sound frequencies, the center of which is called its 'best fre­
quency' (BF). Neighboring units have similar BF's, in accord with the topographic 
frequency organization of the auditory system. For each unit, stimuli with carrier 
frequency v at most 500Hz away from the unit's BF were used. Firing rates in 
response to those stimuli were between 60 - 100Hz. The stimulus and the electrode 
signal were recorded simultaeneously at a sampling rate of 24kHz. After detecting 
and sotring the spikes and extracting the stimulus amplitude, both amplitude and 
spike train were down-sampled to 3kHz. 

3.2 Analysis 

In order to assess the ability to discriminate between different inputs based on the 
observed spike train, we computed the mutual information Ir,s between the spike 
train response r(t) = Li o(t - ti), where ti are the spike times, and the stimulus 
amplitude s(t). I consists of two terms, Ir,s = Hs - Hslr' where Hs is the stimulus 
entropy (the log-number of different stimuli) and Hslr is the entropy of the stimulus 
conditioned on the response (the log-number of different stimuli that could elicit 
a given response, and thus could not be discriminated based on that response, 
averaged over all responses). Our approach generally follows the ideas of (Bialek et 
al. 1991; Rieke et al. 1997). 

To simplify the calculation, we first modified the stimuli s(t) to get s'(t) = f(s(t», 
where the function f(s) was chosen so that s' was Gaussian. Hence for exponential 
stimuli f(s) = y'(2)erfi(1-2e-S ) and for uniform stimuli f(s) = y'(2)erfi(2slbe-1), 
where erfi is the inverse error function. This Gaussianization has two advantages: 
first, the expression for the mutual information Ir,s' (= Ir,s) is now simpler, being 
given by the frequency-dependent signal-to-noise ratio SNR(J) (see below), since 
Hs' depends only on the power spectrum of s'(t); second and more importantly, 
the noise distribution was observed to become closer to Gaussian following this 
transformation. 

To compute Hs'lr we bound it from above by ftc dfH[s'(J) 1 f(J)], the calculation of 
which requires the conditional distribution p[s'(J) 1 f(J)] (note that these variables 
are complex, hence this is the joint ditribution of the real and imaginary parts). 
The latter is approximated by a Gaussian with mean s~(J) and variance Nr(f). 
This variance is, in fact, the power spectrum of the noise, Nr(J) = (I nr(J) 12 ), 

which we define by nr(t) = s'(t) - s~(t). Computing the mutual information for 
those Gaussian distributions is straightforward and provides a lower bound on the 
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Figure 3: Left: signal-to-noise ratio SNR(f) vs. modulation frequency I for natu­
ralistic stimuli. Right: normalized noise distribution (solid line), amplitude distri­
bution of stimuli (dashed line) and of Gaussianized stimuli (dashed-dotted line). 

true Ir,s, 

Ie 

Ir,s = Ir,s' ~ J dllog2 SNR(f) . (2) 
o 

The signal-to-noise ratio is given by SNR(f) = S'(J)j(Nr(f))r, where S'(f) = (I 
s'(J) 12} is the spectrum of the Gaussianized stimulus and the averaging Or is 
performed over all responses. 

The main object here is s~(J), which is an estimate of the stimulus from the elicited 
spike train, and would optimally be given by the conditional mean J ds's'p(s' 1 f) 
at each I (Kay 1993). For Gaussian p( S' ,f) this estimator, which is gener-
ally non-linear, becomes linear in f(f) and is given by h(J)f(J), where h(J) = 
(s'(J)f*(J)}j(f(J)f*(f») is the Wiener filter. However, since our distributions were 
only approximately Gaussians we used the conditional mean, obtained by the kernel 
estimate 

s~(f) = 

(3) 

where k is a Gaussian kernel, R(J) is the spectrum of the spike train, and i indexes 
the data points obtained by computing FFT using a sliding window. The scaling 
by y'Si,.,fii reflects the assumption that the distributions at all I differ only by 
their variance, which enables us to use the data points at all frequencies to estimate 
s~ at a given I. Our estimate produced a slightly higher SNR(f) than the Wiener 
estimate used by (Bialek et al. 1991;Rieke et al. 1997) and others. 

4 Information on Naturalistic Stimuli 

The SNR(f) for exponential stimuli is shown in Fig. 3 (left) for one of our units. 
Ie neurons have a preferred modulation frequency 1m (e.g., Pickles 1988), which is 
about 40Hz for this unit; notice that generally SNR(J) ~ 1, with equality when the 
stimulus and response are completely independent. Thus, stimulus components at 
frequencies higher than 60Hz effectively cannot be estimated from the spike train. 
The stimulus amplitude distribution is shown in Fig. 3 (right, dashed line), together 
with the noise distribution (normalized to have unit variance; solid line) which is 
nearly Gaussian. 
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Figure 4: Left: signal-to-noise ratio SNR(f) vs. modulation frequency f for non­
naturalistic stimuli (solid line) compared with naturalistic stimuli (dotted line). 
Right: normalized noise distribution (solid line), amplitude distribution of stim­
uli (dashed line) compared with that of naturalistic stimuli (dotted line), and of 
Gaussianized stimuli (dashed-dotted line). 

Using (2) we obtain an information rate of Ir,s ~ 114bit/sec. For the spike rate 
of 82spike/sec measured in this unit, this translates into 1.4bit/spike. Averaging 
across units, we have 1.3 ± 0.2bit/spike for naturalistic stimuli. 

Although this information rate was computed using the conditional mean estimator 
(3), it is interesting to examine the Wiener filter h{t) which provides the optimal 
linear estimator of the stimulus, as discussed in the previous section. This filter 
is displayed in Fig. 5 (solid line) and has a temporal width of several tens of 
milliseconds. 

5 Information on Non-Naturalistic Stimuli 

The SNR(f) for uniform stimuli is shown in Fig. 4 (left, solid line) for the same 
unit as in Fig. 3, and is significantly lower than the corresponding SNR(f) for ex­
ponential stimuli plotted for comparison (dashed line). For the mutual information 
rate we obtain Ir,B ~ 77bit/sec, which amounts to 0.94bit/spike. Averaging across 
units, we have 0.8 ± 0.2bit/spike for non-naturalistic stimuli. 

The stimulus amplitude distribution is shown in Fig. 4 (right, dashed line), together 
with the exponential distribution (dotted line) plotted for comparison, as well as 
the noise distribution (normalized to have unit variance). The noise in this case is 
less Gaussian than for exponential stimuli, suggesting that our calculated bound on 
Ir,s may be lower for uniform stimuli. 

Fig. 5 shows the stimulus reconstruction filter (dashed line). It has a similar time 
course as the filter for exponential stimuli, but the decay is significantly slower and 
its temporal width is more than 100msec. 

6 Conclusion 

We measured the rate at which auditory neurons carry information on simple stimuli 
with naturalistic amplitude modulation, and found that it was higher than for 
stimuli with non-naturalistic modulation. A result along the same lines for the frog 
was obtained by (Rieke et al. 1995) using Gaussian signals whose spectrum was 
shaped according to the frog call spectrum. Similarly, work in vision (Laughlin 1981; 
Field 1987; Atick and Redlich 1990; Ruderman and Bialek 1994; Dong and Atick 
1995) suggests that visual receptive field properties are consistent with optimal 
coding predictions based on characteristics of natural images. Future work will 
explore coding of stimuli with more complex natural statistical characteristics and 
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Figure 5: Impulse response of Wiener reconstruction filter for naturalistic stimuli 
(solid line) and non-naturalistic stimuli (dashed line). 

will extend to higher processing stages. 
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