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Abstract 

Active data clustering is a novel technique for clustering of proxim­
ity data which utilizes principles from sequential experiment design 
in order to interleave data generation and data analysis. The pro­
posed active data sampling strategy is based on the expected value 
of information, a concept rooting in statistical decision theory. This 
is considered to be an important step towards the analysis of large­
scale data sets, because it offers a way to overcome the inherent 
data sparseness of proximity data. '''Ie present applications to unsu­
pervised texture segmentation in computer vision and information 
retrieval in document databases. 

1 Introduction 

Data clustering is one of the core methods for numerous tasks in pattern recognition, 
exploratory data analysis, computer vision, machine learning, data mining, and in 
many other related fields. Concerning the data representation it is important to 
distinguish between vectorial data and proximity data, cf. [Jain, Dubes, 1988]. In 
vectorial data each measurement corresponds to a certain 'feature' evaluated at an 
external scale. The elementary measurements of proximity data are, in contrast, 
(dis-)similarity values obtained by comparing pairs of entities from a given data set. 
Generating proximity data can be advantageous in cases where 'natural' similarity 
functions exist, while extracting features and supplying a meaningful vector-space 
metric may be difficult. We will illustrate the data generation process for two 
exemplary applications: unsupervised segmentation of textured images and data 
mining in a document database. 

Textured image segmentation deals with the problem of partitioning an image into 
regions of homogeneous texture. In the unsupervised case, this has to be achieved on 
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the basis of texture similarities without prior knowledge about the occuring textures. 
Our approach follows the ideas of [Geman et al., 1990] to apply a statistical test to 
empirical distributions of image features at different sites. Suppose we decided to 
work with the gray-scale representation directly. At every image location P = (x, y) 
we consider a local sample of gray-values, e.g., in a squared neighborhood around p. 
Then, the dissimilarity between two sites Pi and Pj is measured by the significance of 
rejecting the hypothesis that both samples were generated from the same probability 
distribution. Given a suitable binning (tk h :5: k :5: R and histograms Ii, Ij, respectively, 
we propose to apply a x2-test, i.e., 

(1) 

In fact, our experiments are based on a multi-scale Gabor filter representation in­
stead of the raw data, cf. [Hofmann et al. , 1997] for more details . The main advan­
tage of the similarity-based approach is that it does not reduce the distributional 
information, e.g., to some simple first and second order statistics, before comparing 
textures. This preserves more information and also avoids the ad hoc specifica­
tion of a suitable metric like a weighted Euclidean distance on vectors of extracted 
moment statistics. 

As a second application we consider structuring a database of documents for im­
proved information retrieval. Typical measures of association are based on the 
number of shared index terms [Van Rijsbergen , 1979]. For example, a document 
is represented by a (sparse) binary vector B, where each entry corresponds to the 
occurrence of a certain index term. The dissimilarity can then be defined by the 
cosme measure 

(2) 

Notice, that this measure (like many other) may violate the triangle inequality. 

2 Clustering Sparse Proximity Data 

In spite of potential advantages of similarity-based methods, their major drawback 
seems to be the scaling behavior with the number of data: given a dataset with N 
entities, the number of potential pairwise comparisons scales with O(N2). Clearly, 
it is prohibitive to exhaustively perform or store all dissimilarities for large datasets, 
and the crucial problem is how to deal with this unavoidable data sparseness. More 
fundamentally, it is already the data generation process which has to solve the 
problem of experimental design, by selecting a subset of pairs (i, j) for evaluation. 
Obviously, a meaningful selection strategy could greatly profit from any knowledge 
about the grouping structure of the data. This observation leads to the concept of 
performing a sequential experimental design which interleaves the data clustering 
with the data acquisition process. \Ve call this technique active data clustering, 
because it actively selects new data, and uses tentative knowledge to estimate the 
relevance of missing data. It amounts to inferring from the available data not 
only a grouping structure, but also to learn which future data is most relevant for 
the clustering problem. This fundamental concept may also be applied to other 
unsupervised learning problems suffering from data sparseness. 

The first step in deriving a clustering algorithm is the specification of a suitable 
objective function . In the case of similarity-based clustering this is not at all a 
trivial problem and we have systematically developed an axiomatic approach based 
on invariance and robustness principles [Hofmann et al. , 1997] . Here, we can only 



530 T. Hofmann and J. M. Buhmann 

give some informal justifications for our choice. Let us introduce indicator func­
tions to represent data partitionings, M iv being the indicator function for entity 0i 

belonging to cluster Cv ' For a given number J{ of clusters, all Boolean functions 
are summarized in terms of an assignment matrix M E {O, 1 }NXK. Each row of M 
is required to sum to one in order to guarantee a unique cluster membership. To 
distinguish between known and unknown dissimilarities, index sets or neighborhoods 
N = (N1 , • •. , NN) are introduced. If j EM this means the value of Dij is available, 
otherwise it is not known. For simplicity we assume the dissimilarity measure (and 
in turn the neighborhood relation) to be symmetric, although this is not a necessary 
requjrement. With the help of these definition the proposed criterion to assess the 
quality of a clustering configuration is given by 

N K 

1i(M;D,N) LLMivdiv, (3) 
i=1 v=1 

1i additively combines contributions div for each entity, where div corresponds to 
the average dissimilarity to entities belonging to cluster Cv . In the sparse data case, 
averages are restricted to the fraction of entities with known dissimilarities, i.e., the 
subset of entities belonging to Cv n;Vi. 

3 Expected Value of Information 

To motivate our active data selection criterion, consider the simplified sequential 
problem of inserting a new entity (or object) ON to a database of N - 1 entities 
with a given fixed clustering structure. Thus we consider the decision problem of 
optimally assigning the new object to one of the J{ clusters. If all dissimilarities 
between objects 0i and object ON are known, the optimal assignment only depends 
on the average dissimilarities to objects in the different clusters, and hence is given 
by 

(4) 

For incomplete data, the total population averages dNv are replaced by point esti­
mators dNv obtained by restricting the sums in (4) to N N, the neighborhood of ON. 

Let us furthermore assume we want to compute a fixed number L of dissimilarities 
before making the terminal decision. If the entities in each cluster are not further 
distinguished, we can pick a member at random, once we have decided to sample 
from a cluster Cv . The selection problem hence becomes equivalent to the prob­
lem of optimally distributing L measurements among J{ populations, such that the 
risk of making the wrong decision based on the resulting estimates dNv is minimal. 
More formally, this risk is given by n = dNcx - dNcx.' where a is the decision based 
on the subpopulation estimates {dNv } and a* is the true optimum. 

To model the problem of selecting an optimal experiment we follow the Bayesian 
approach developed by Raiffa & Schlaifer [Raiffa, Schlaifer, 1961] and compute the 
so-called Expected Value of Sampling Information (EVSI). As a fundamental step 
this involves the calculation of distributions for the quantities dNv ' For reasons 
of computational efficiency we are assuming that dissimilarities resulting from a 
comparison with an object in cluster Cv are normally distributed 1 with mean dNv 
and variance uNv 2. Since the variances are nuisance parameters the risk func­
tion n does not depend on, it suffices to calculate the marginal distribution of 

lOther computationally more expensive choices to model within cluster dissimilarities 
are skewed distributions like the Gamma-d.istribution. 
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Figure 1: (a) Gray-scale visualization of the generated proximity matrix (N = 800). 
Dark/light gray values correspond to low/high dissimilarities respectively, Dij being 
encoded by pixel (i, j). (b) Sampling snapshot for active data clustering after 60000 
samples, queried values are depicted in white. (c) Costs evaluated on the complete 
data for sequential active and random sampling. 

dN/I' For the class of statistical models we will consider in the sequel the empiri­
cal mean dN/I, the unbiased variance estimator O"Jv/l and the sample size mN/I are 
a sufficient statistic. Depending on these empirical quantities the marginal poste­
rior distribution of dN/I for uninformative priors is a Student t distribution with 
t = .jmN/I(dN/I - dN/I)/O"N/I and mN/I - 1 degrees of freedom . The corresponding 
density will be denoted by !/I(dNII\dN/I,O"JvIl,mNII)' With the help of the poste­
rior densities !/I we define the Expected Value of Perfect Information (EVPI) after 
having observed (dN/I,O"Jv/l,mNII) by 

1+00 1+00 K 
EVPI = -00'" -00 m;x{dNa-dNII } g !/I(drvll\dNII , O"~II' mN/I) d drvll, (5) 

where a = arg minll dNII . The EVPI is the loss one expects to incur by making 
the decision a based on the incomplete il1formation {dN/I} instead of the optimal 
decision a", or, put the other way round, the expected gain we would obtain if a" 
was revealed to us. 

In the case of experimental design, the main quantity of interest is not the EVPI but 
the Expected Value of Sampling Information (EVSI). The EVSI quantifies how much 
gain we are expecting from additional data. The outcome of additional experiments 
can only be anticipated by making use of the information which is already avail­
able . This is known as preposterior analysis. The linearity of the utility measure 
implies that it suffices to calculate averages with respect to the preposterous distri­
bution [Raiffa, Schlaifer, 1961, Chapter 5.3]. Drawing mt/l additional samples from 
the lI-th population, and averaging possible outcomes with the (prior) distribution 
!/I(dN/I\dN/I,O"Jv/l,mNII) will not affect the unbiased estimates dN/I,O"Jv/l, but only 
increase the number of samples mN/I --;. mNII + mt/l ' Thus, we can compute the 
EVSI from (5) by replacing the prior densities with.its preposterous counterparts. 

To evaluate the K-dimensional integral in (5) or its EVSI variant we apply Monte­
Carlo techniques, sampling from the Student t densities using Kinderman's re-
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Figure 2: (a) Solution quality for active and random sampling on data generated 
from a mixture image of 16 Brodatz textures (N = 1024). (b) Cost trajectories and 
segmentation results for an active and random sampling example run (N = 4096). 

jection sampling scheme, to get an empirical estimate of the random variable 
'l/Ja(dN1 , ... , dNK ) = maxv{dNa-dNIJ. Though this enables us in principle to ap­
proximate the EVSI of any possible experiment, we cannot efficiently compute it for 
all possible ways of distributing the L samples among J{ populations. In the large 
sample limit, however, the EVSI becomes a concave function of the sampling sizes. 
This motivates a greedy design procedure of drawing new samples incrementally 
one by one. 

4 Active Data Clustering 

So far we have assumed the assignments of all but one entity ON to be given in 
advance. This might be realistic in certain on-line applications, but more often 
we want to simultaneously find assignments for all entities in a dataset. The active 
data selection procedure hence has to be combined with a recalculation of clustering 
solutions, because additional data may help us not only to improve our terminal 
decision, but also with respect to our sampling'strategy. A local optimization of 'Ii 
for assignments of a single object OJ can rely on the quantities 

L [f- + ~il MjvDij - L +} -i L MjvM/cvDjk, 
JEN. IV njv JEN. njvnjv kENj-{i} 

(6) 

where njv = 2:jEN. Mjv, n;: njv - M iv , and nj: = n;: + 1, by setting 
Mia = 1 {==> a = arg minv giv = argminv'li(M!Miv = 1), a claim which can 
be proved by straightforward algebraic manipulations (cf. [Hofmann et al., 1997]). 
This effectively amounts to a cluster readjustment by reclassification of objects. For 
additional evidence arising from new dissimilarities, one thus performs local reas­
signments, e.g., by cycling through all objects in random order, until no assignment 
is changing. 

To avoid unfavorable local minima one may also introduce a computational tem­
perature T and utilize {9iv} for simulated annealing based on the Gibbs sampler 

[Geman, Geman, 1984], P{Mia = I} = exp [-;J.gia]J2:~=l exp [-;J.9iv], Alterna­
tively, Eq. (6) may also serve as the starting point to derive mean-field equations in 
a deterministic annealing framework, cf. [Hofmann, Buhmann, 1997]. These local 
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Figure 3: Clustering solution with 20 clusters for 1584 documents on 'clustering'. 
Clusters are characterized by their 5 most topical and 5 most typical index terms. 

optimization algorithms are well-suited for an incremental update after new data 
has been sampled, as they do not require a complete recalculation from scratch. The 
probabilistic reformulation in an annealing framework has the further advantage to 
provide assignment probabilities which can be utilized to improve the randomized 
'partner' selection procedure. For any of these algorithms we sequentially update 
data assignments until a convergence criterion is fulfilled. 

5 Results 

To illustrate the behavior of the active data selection criterion we have run a series 
of repeated experiments on artificial data. For N = 800 the data has been di­
vided into 8 groups of 100 entities. Intra-group dissimilarities have been set to zero, 
while inter-group dissimilarities were defined hierarchically. All values have been 
corrupted by Gaussian noise. The proximity matrix, the sampling performance, 
and a sampling snapshot are depicted in Fig. 1. The sampling exactly performs as 
expected: after a short initial phase the active clustering algorithm spends more 
samples to disambiguate clusters which possess a higher mean similarity, while less 
dissimilarities are queried for pairs of entities belonging to well separated clusters. 
For this type of structured data the gain of active sampling increases with the depth 
of the hierarchy. The final solution variance is due to local minima. Remarkably 
the active sampling strategy not only shows a faster improvement, it also finds on 
average significantly better solution. Notice that the sampling has been decom­
posed into stages, refining clustering solutions after sampling of 1000 additional 
dissimilari ties. 

The results of an experiment for unsupervised texture segmentation is shown 
Fig. 2. To obtain a close to optimal solution the active sampling strategy 
roughly needs less than 50% of the sample size required by random sampling for 
both, a resolution of N = 1024 and N = 4096. At a 64 x 64 resolution, for 
L = 100[{, 150[{, 200[{ actively selected samples the random strategy needs on 
average L = 120[{, 300[{, 440f{ samples, respectively, to obtain a comparable solu­
tion quality. Obviously, active sampling can only be successful in an intermediate 
regime: if too little is known, we cannot infer additional information to improve our 
sampling, if the sample is large enough to reliably detect clusters, there is no need 
to sample any more. Yet, this intermediate regime significantly increases with [{ 
(and N). 
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Finally, we have clustered 1584 documents containing abstracts of papers with clus­
tering as a title word. For I{ = 20 clusters2 active clustering needed 120000 samples 
« 10% of the data) to achieve a solution quality within 1% of the asymptotic so­
lution. A random strategy on average required 230000 samples. Fig. 3 shows the 
achieved clustering solution, summarizing clusters by topical (most frequent) and 
typical (most characteristic) index terms. The found solution gives a good overview 
over areas dealing with clusters and clustering3 . 

6 Conclusion 

As we have demonstrated, the concept of expected value of information fits nicely 
into an optimization approach to clustering of proximity data, and establishes a 
sound foundation of active data clustering in statistical decision theory. On the 
medium size data sets used for validation, active clustering achieved a consistently 
better performance as compared to random selection. This makes it a promising 
technique for automated structure detection and data mining applications in large 
data bases. Further work has to address stopping rules and speed-up techniques 
to accelerate the evaluation of the selection criterion, as well as a unification with 
annealing methods and hierarchical clustering. 
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