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Abstract 

A neural network approach to stereovision is presented based on 
aliasing effects of simple disparity estimators and a fast coherence­
detection scheme. Within a single network structure, a dense dis­
parity map with an associated validation map and, additionally, 
the fused cyclopean view of the scene are available. The network 
operations are based on simple, biological plausible circuitry; the 
algorithm is fully parallel and non-iterative. 

1 Introduction 

Humans experience the three-dimensional world not as it is seen by either their left 
or right eye, but from a position of a virtual cyclopean eye, located in the middle 
between the two real eye positions. The different perspectives between the left and 
right eyes cause slight relative displacements of objects in the two retinal images 
(disparities), which make a simple superposition of both images without diplopia 
impossible. Proper fusion of the retinal images into the cyclopean view requires the 
registration of both images to a common coordinate system, which in turn requires 
calculation of disparities for all image areas which are to be fused. 

1.1 The Problems with Classical Approaches 

The estimation of disparities turns out to be a difficult task, since various random 
and systematic image variations complicate this task. Several different techniques 
have been proposed over time, which can be loosely grouped into feature-, area-
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and phase-based approaches. All these algorithms have a number of computational 
problems directly linked to the very assumptions inherent in these approaches. 

In feature-based stereo, intensity data is first converted to a set of features assumed 
to be a more stable image property than the raw image intensities. Matching 
primitives used include zerocrossings, edges and corner points (Frisby, 1991), or 
higher order primitives like topological fingerprints (see for example: Fleck, 1991) . 
Generally, the set of feature-classes is discrete, causing the two primary problems 
of feature-based stereo algorithms: the famous "false-matches"-problem and the 
problem of missing disparity estimates. 

False matches are caused by the fact that a single feature in the left image can 
potentially be matched with every feature of the same class in the right image. 
This problem is basic to all feature-based stereo algorithms and can only be solved 
by the introduction of additional constraints to the solution. In conjunction with 
the extracted features these constraints define a complicated error measure which 
can be minimized by cooperative processes (Marr, 1979) or by direct (Ohta, 1985) 
or stochastic search techniques (Yuille, 1991). While cooperative processes and 
stochastic search techniques can be realized easily on a neural basis, it is not im­
mediately clear how to implement the more complicated algorithmic structures of 
direct search techniques neuronally. Cooperative processes and stochastic search 
techniques turn out to be slow, needing many iterations to converge to a local 
minimum of the error measure. 

The requirement of features to be a stable image property causes the second problem 
of feature-based stereo: stable features can only be detected in a fraction of the 
whole image area, leading to missing disparity estimates for most of the image area. 
For those image parts, disparity estimates can only be guessed. 

Dense disparity maps can be obtained with area-based approaches, where a suitable 
chosen correlation measure is maximized between small image patches of the left and 
right view. However, a neuronally plausible implementation of this seems to be not 
readily available. Furthermore, the maximization turns out to be a computationally 
expensive process, since extensive search is required in configuration space. 

Hierarchical processing schemes can be utilized for speed-up, by using information 
obtained at coarse spatial scales to restrict searching at finer scales. But, for general 
image data, it is not guaranteed that the disparity information obtained at some 
coarse scale is valid. The disparity data might be wrong, might have a different value 
than at finer scales , or might not be present at all. Furthermore, by processing data 
from coarse to fine spatial scales, hierarchical processing schemes are intrinsically 
sequential. This creates additional algorithmic overhead which is again difficult to 
realize with neuronal structures. 

The same comments apply to phase-based approaches, where a locally extracted 
Fourier-phase value is used for matching. Phase values are only defined modulo 
211", and this wrap-around makes the use of hierarchical processing essential for 
these types of algorithms. Moreover, since data is analyzed in different spatial 
frequency channels, it is nearly certain that some phase values will be undefined 
at intermediate scales, due to missing signal energy in this frequency band (Fleet, 
1993) . Thus, in addition to hierarchical processing, some kind of exception handling 
is needed with these approaches. 
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2 Stereovision by Coherence Detection 

In summary, classical approaches to stereovision seem to have difficulties with the 
fast calculation of dense disparity-maps, at least with plausible neural circuitry. 
In the following, a neural network implementation will be described which solves 
this task by using simple disparity estimators based on motion-energy mechanisms 
(Adelson, 1985; Qian, 1997), closely resembling responses of complex cells in visual 
cortex (DeAngelis, 1991). Disparity units of these type belong to a class of disparity 
estimators which can be derived from optical flow methods (Barron, 1994). Clearly, 
disparity calculations and optical flow estimation share many similarities. The two 
stereo views of a (static) scene can be considered as two time-slices cut out of 
the space-time intensity pattern which would be recorded by an imaginary camera 
moving from the position of the left to the position of the right eye. However, 
compared to optical flow, disparity estimation is complicated by the fact that only 
two discrete "time"-samples are available, namely the images of the left and right 
view positions. 

to 
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Figure 1: The velocity of an image patch manifests itself as principal texture direc­
tion in the space-time flow field traced out by the intensity pattern in time (left). 
Sampling such flow patterns at discrete times can create aliasing-effects which lead 
to wrong estimates. If one is using optical flow estimation techniques for disparity 
calculations, this problem is always present. 

For an explanation consider Fig. 1. A surface patch shifting over time traces out 
a certain flow pattern. The principal texture direction of this flow indicates the 
relative velocity of the image patch (Fig. 1, left). Sampling the flow pattern only 
at discrete time points, the shift between two "time-samples" can be estimated 
without ambiguity provided the shift is not too large (Fig. 1, middle). However, if a 
certain limit is exceeded, it becomes impossible to estimate the shift correctly, given 
the data (Fig. 1, right). This is a simple aliasing-effect in the "time"-direction; an 
everyday example can be seen as motion reversal in movies. 

In the case of stereovision, aliasing-effects of this type are always present, and they 
limit the range of disparities a simple disparity unit can estimate. Sampling theory 
gives a relation between the maximal spatial wavevector k~ax (or, equivalently, the 
minimum spatial wavelength >'~in) present in the data and the largest disparity 
which can be estimated reliably (Henkel, 1997): 

II 7r _1I{J 
d < k~ax - '2>'min . (1) 
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A well-known example of the size-disparity scaling expressed in equation (1) is 
found in the context of the spatial frequency channels assumed to exist in the 
visual cortex. Cortical cells respond to spatial wavelengths down to about half 
their peak wavelength Aopt; therefore, they can estimate reliable only disparities 
less than 1/4 Aopt. This is known as Marr's quarter-cycle limit (Blake, 1991). 

Equation (1) immediately suggests a way to extend the limited working range of 
disparity estimators: a spatial smoothing of the image data before or during dispar­
ity calculation reduces k'f:tax, and in turn increases the disparity range. However, 
spatial smoothing reduces also the spatial resolution of the resulting disparity map. 
Another way of modifying the usable range of disparity estimators is the applica­
tion of a fixed preshift to the input data before disparity calculation. This would 
require prior knowledge of the correct preshift to be applied, which is a nontrivial 
problem. One could resort to hierarchical coarse-to-fine schemes, but the difficulties 
with hierarchical schemes have already been elal ')rated. 

The aliasing effects discussed are a general feature of sampling visual space with 
only two eyes; instead of counteracting, one can exploit them in a simple coherence­
detection scheme, where the multi-unit activity in stacks of disparity detectors tuned 
to a common view direction is analyzed. 

Assuming that all disparity units i in a stack have random preshifts or presmoothing 
applied to their input data, these units will have different, but slightly overlapping 
working ranges Di = [diin , diax] for valid disparity estimates. An object with true 
disparity d, seen in the common view direction of such a stack, will therefore split 
the stack into two disjunct classes: the class C of estimators with dEDi for all 
i E C, and the rest of the stack, C, with d ¢ D i . All disparity estimators E C will 
code more or less the true disparity di ~ d, but the estimates of units belonging to C 
will be subject to the random aliasing effects discussed, depending in a complicated 
way on image content and disparity range Di of the unit. 

We will thus have di ~ d ~ dj whenever units i and j belong to C, and random rela­
tionships otherwise. A simple coherence detection within each stack, i.e. searching 
for all units with di ~ dj and extracting the largest cluster found, will be sufficient 
to single out C. The true disparity d in the view direction of the stack can be simply 
estimated as an average over all coherently coding units: 

3 Neural Network Implementation 

Repeating this coherence detection scheme in every view direction results in a fully 
parallel network structure for disparity calculation. Neighboring disparity stacks 
responding to different view directions estimate disparity values independently from 
each other, and within each stack, disparity units operate independently from each 
other. Since coherence detection is an opportunistic scheme, extensions of the basic 
algorithm to mUltiple spatial scales and combinations of different types of disparity 
estimators are trivial. Additional units are simply included in the appropriate 
coherence stacks. The coherence scheme will combine only the information from 
the coherently coding units and ignore the rest of the data. For this reason, the 
scheme also turns out to be extremely robust against single-unit failures. 



812 R. D. Henkel 

disparity data "h'7" -----------r·----------
Left eye·" .. , : .' Right eye 

, .............. , .. 
Cyclopean eye 

Figure 2: The network structure for a single horizontal scan-line (left). The view 
directions of the disparity stacks split the angle between the left and right lines 
of sight in the network and 3D-space in half, therefore analyzing space along the 
cyclopean view directions (right). 

In the current implementation (Fig. 2), disparity units at a single spatial scale 
are arranged into horizontal disparity layers. Left and right image data is fed 
into this network along diagonally running data lines. This causes every disparity 
layer to receive the stereo data with a certain fixed preshift applied, leading to the 
required, slightly different working-ranges of neighboring layers. Disparity units 
stacked vertically above each other are collected into a single disparity stack which 
is then analyzed for coherent activity. 

4 Results 

The new stereo network performs comparable on several standard test image sets 
(Fig. 3). The calculated disparity maps are similar to maps obtained by classical 
area-based approaches, but they display subpixel-precision. Since no smoothing or 
regularization is performed by the coherence-based stereo algorithm, sharp disparity 
edges can be observed at object borders. 

Within the network, a simple validation map is available locally. A measure of local 

Figure 3: Disparity maps for some standard test images (small insets), calculated 
by the coherence-based stereo algorithm. 
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Figure 4: The performance of coherence-based stereo on a difficult scene with spec­
ular highlights, transparency and repetitive structures (left). The disparity map 
(middle) is dense and correct, except for a few structure-less image regions. These 
regions, as well as most object borders, are indicated in the validation map (right) 
with a low [dark] validation count. 

coherence can be obtained by calculating the relative number of coherently acting 
disparity units in each stack, i.e. by calculating the ratio N(C)/ N(CUC), where N(C) 
is the number of units in class C. In most cases, this validation map clearly marks 
image areas where the disparity calculations failed (for various reasons, notably at 
occlusions caused by object borders, or in large structure-less image regions, where 
no reliable matching can be obtained - compare Fig 4). 

Close inspection of disparity and validation maps reveals that these image maps 
are not aligned with the left or the right view of the scene. Instead, both maps are 
registered with the cyclopean view. This is caused by the structural arrangement of 
data lines and disparity stacks in the network. Reprojecting data lines and stacks 
back into 3D-space shows that the stacks analyze three-dimensional space along 
lines splitting the angle between the left and right view directions in half. This is 
the cyclopean view direction as defined by (Hering, 1879). 

It is easy to obtain the cyclopean view of the scene itself. With If and If denoting 
the left and right input data at the position of disparity-unit i, a summation over 
all coherently coding disparity units in a stack, i.e., 

Figure 5: A simple superposition of the left and right stereo images results in 
diplopia (left). By using a vergence system, the two stereo images can be aligned 
better (middle), but diplopia is still prominent in most areas of the visual field. 
The fused cyclopean view of the scene (left) was calculated by the coherence-based 
stereo network. 



814 R. D. Henkel 

gives the image intensity I C in the cyclopean view-direction of this stack. Collecting 
IC from all disparity stacks gives the complete cyclopean view as the third co­
registered map of the network (Fig 5). 
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