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Abstract 

Monotonicity is a constraint which arises in many application do­
mains. We present a machine learning model, the monotonic net­
work, for which monotonicity can be enforced exactly, i.e., by virtue 
offunctional form . A straightforward method for implementing and 
training a monotonic network is described. Monotonic networks 
are proven to be universal approximators of continuous, differen­
tiable monotonic functions. We apply monotonic networks to a 
real-world task in corporate bond rating prediction and compare 
them to other approaches. 

1 Introduction 

Several recent papers in machine learning have emphasized the importance of pri­
ors and domain-specific knowledge. In their well-known presentation of the bias­
variance tradeoff (Geman and Bienenstock, 1992)' Geman and Bienenstock conclude 
by arguing that the crucial issue in learning is the determination of the "right bi­
ases" which constrain the model in the appropriate way given the task at hand . 
The No-Free-Lunch theorem of Wolpert (Wolpert, 1996) shows, under the 0-1 error 
measure, that if all target functions are equally likely a priori, then all possible 
learning methods do equally well in terms of average performance over all targets . 
One is led to the conclusion that consistently good performance is possible only 
with some agreement between the modeler's biases and the true (non-flat) prior. 
Finally, the work of Abu-Mostafa on learning from hints (Abu-Mostafa, 1990) has 
shown both theoretically (Abu-Mostafa, 1993) and experimentally (Abu-Mostafa, 
1995) that the use of prior knowledge can be highly beneficial to learning systems. 

One piece of prior information that arises in many applications is the monotonicity 
constraint, which asserts that an increase in a particular input cannot result in a 
decrease in the output. A method was presented in (Sill and Abu-Mostafa, 1996) 
which enforces monotonicity approximately by adding a second term measuring 
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"monotonicity error" to the usual error measure. This technique was shown to 
yield improved error rates on real-world applications. Unfortunately, the method 
can be quite expensive computationally. It would be useful to have a model which 
obeys monotonicity exactly, i.e., by virtue of functional form . 

We present here such a model, which we will refer to as a monotonic network. 
A monotonic network implements a piecewise-linear surface by taking maximum 
and minimum operations on groups of hyperplanes. Monotonicity constraint'> are 
enforced by constraining the signs of the hyperplane weights. Monotonic networks 
can be trained using the usual gradient-based optimization methods typically used 
with other models such as feedforward neural networks. Armstrong (Armstrong et. 
al. 1996) has developed a model called the adaptive logic network which is capable 
of enforcing monotonicity and appears to have some similarities to the approach 
presented here. The adaptive logic network, however, is available only through a 
commercial software package. The training algorithms are proprietary and have 
not been fully disclosed in academic journals. The monotonic network therefore 
represents (to the best of our knowledge) the first model to be presented in an 
academic setting which has the ability to enforce monotonicity. 

Section II describes the architecture and training procedure for monotonic networks. 
Section III presents a proof that monotonic networks can uniformly approximate 
any continuous monotonic function with bounded partial derivatives to an arbitrary 
level of accuracy. Monotonic networks are applied to a real-world problem in bond 
rating prediction in Section IV. In Section V, we discuss the results and consider 
future directions. 

2 Architecture and Training Procedure 

A monotonic network has a feedforward, three-layer (two hidden-layer) architecture 
(Fig. 1). The first layer of units compute different linear combinations of the input 
vector. If increasing monotonicity is desired for a particular input, then all the 
weights connected to that input are constrained to be positive. Similarly, weights 
connected to an input where decreasing monotonicity is required are constrained to 
be negative. The first layer units are partitioned into several groups (the number 
of units in each group is not necessarily the same). Corresponding to each group is 
a second layer unit, which computes the maximum over all first-layer units within 
the group. The final output unit computes the minimum over all groups. 

More formally, if we have f{ groups with outputs 91,92, ... 9K, and if group k 
consists of hk hyperplanes w(k, 1) , w(k,2), ... w(k,hk ), then 

9k(X) = m~xw(kJ) . x - t(k,i), 1::; j ::; hk 
3 

Let y be the final output of the network. Then 

or, for classification problems, 

where u(u) = e.g. l+!-u. 
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Figure 1: This monotonic network obeys increasing monotonicity in all 3 inputs 
because all weights in the first layer are constrained to be positive. 

In the discussions which follow, it will be useful to define the term active. We will 
call a group 1 active at x if 

g/(x) = mingk(x) 
k 

, i.e., if the group determines the output of the network at that point . Similarly, we 
will say that a hyperplane is active at x if its group is active at x and the hyperplane 
is the maximum over all hyperplanes in the group. 

As will be shown in the following section, the three-layer architecture allows a mono­
tonic network to approximate any continuous, differentiable monotonic function 
arbitrarily well, given sufficiently many groups and sufficiently many hyperplanes 
within each group. The maximum operation within each group allows the network 
to approximate convex (positive second derivative) surfaces, while the minimum op­
eration over groups enables the network to implement the concave (negative second 
derivative) areas of the target function (Figure 2). 
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Figure 2: This surface is implemented by a monotonic network consisting of three 
groups. The first and third groups consist of three hyperplanes, while the second 
group has only two. 

Monotonic networks can be trained using many of the standard gradient-based 
optimization techniques commonly used in machine learning. The gradient for 
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each hyperplane is found by computing the error over all examples for which the 
hyperplane is active. After the parameter update is made according to the rule of 
the optimization technique, each training example is reassigned to the hyperplane 
that is now active at that point. The set of examples for which a hyperplane is 
active can therefore change during the course of training. 

The constraints on the signs of the weights are enforced using an exponential 
transformation. If increasing monotonicity is desired in input variable i, then 
V j, k the weights corresponding to the input are represented as Wi (j ,k) ::::: eZ, (i ,k) . 

The optimization algorithm can modify zlj,k) freely during training while main­
taining the constraint. If decreasing monotonicity is required, then Vj, k we take 

( . k) (i,k) 
Wi)' = _ez , . 

3 Universal Approximation Capability 

In this section, we demonstrate that monotonic networks have the capacity to ap­
proximate uniformly to an arbitrary degree of accuracy any continuous, bounded, 
differentiable function on the unit hypercube [0, I]D which is monotonic in all vari­
ables and has bounded partial derivatives. We will say that x' dominates x if 
VI :S d:S D, x~ ~ Xd. A function m is monotonic in all variables if it satisfies the 
constraint that Vx,x', if x' dominates x then m(x') ~ m(x). 

Theorem 3.1 Let m(x) be any continuous, bounded monotonic function with 
bounded partial derivatives, mapping [0, I]D to R. Then there exists a function 
mnet(x) which can be implemented by a monotonic network and is such that, for 
any f and any x E [0, I]D ,Im(x) - mnet(x)1 < f. 
Proof: 

Let b be the maximum value and a be the minimum value which m takes on [0, I]D. 
Let a bound the magnitude of all partial first derivatives of m on [0, I]D. Define 
an equispaced grid of points on [0, 1]D, where ° = ~ is the spacing between grid 
points along each dimension. I.e., the grid is the set S of points (ilO, i 2o, .. . iDOl 
where 1 :S i1 :S n,1 :S i2 :S n, ... 1 :S iD :S n. Corresponding to each grid point 
x' = (x~, x~, ... xv), assign a group consisting of D+ 1 hyperplanes. One hyperplane 
in the group is the constant output plane y = m(x'). In addition, for each dimension 
d, place a hyperplane y = ,(Xd - x~) + m(x') , where, > b'6 a . This construction 
ensures that the group associated with x' cannot be active at any point x* where 
there exists a d such that xd - x~ > 0, since the group's output at such a point 
must be greater than b and hence greater than the output of a group associated 
with another grid point. 

Now consider any point x E [0, I]D. Let S(l) be the unique grid point in S such that 
Vd, ° :S Xd - si1) < 0, i.e., S(l) is the closest grid point to x which x dominates. 
Then we can show that mnet(x) ~ m(s(l»). Consider an arbitrary grid point s' =f. 
s(l). By the monotonicity of m, if s' dominates S(l), then m(s') ~ m(s(l»), and 
hence, the group associated with s' has a constant output hyperplane y = m(s') ~ 
m(s(l») and therefore outputs a value ~ m(s(l») at x. If 8' does not dominate S(l), 
then there exists a d such that Sd(l) > s~. Therefore, Xd - s~ ~ 0, meaning that 
the output of the group associated with s' is at least b ~ m(s(l»). All groups have 
output at least as large as m(s(l»), so we have indeed shown that mnet(X) ~ m(s(l»). 
Now consider the grid point S(2) that is obtained by adding 0 to each coordinate of 
s(l). The group associated with s(2) outputs m(s(2») at x, so mnet(x) :S m(s(2»). 
Therefore, we have m(s(l») :S mnet(x) :S m(s(2»). Since x dominates s(l) and 
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is dominated by S(2), by mono tonicity we also have m(s(l)) :S m(x) :S m(s(2)). 
Im(x) - mnet(x)1 is therefore bounded by Im(s{2)) - m(s(l))I. By Taylor's theorem 
for multivariate functions, we know that 

for some point c on the line segment between S(I) and s(2). Given the assumptions 
made at the outset, Im(s(2))-m(s(1))j, and hence, \m(x)-mnedx)1 can be bounded 
by d.5Ct. We take .5 < d~ to complete the proof •. 

4 Experimental Results 

We tested monotonic networks on a real-world problem concerning the prediction 
of corporate bond ratings. Rating agencies such as Standard & Poors (S & P) issue 
bond ratings intended to assess the level of risk of default associated with the bond. 
S & P ratings can range from AAA down to B- or lower. 

A model which accurately predicts the S & P rating of a bond given publicly avail­
able financial information about the issuer has considerable value. Rating agencies 
do not rate all bonds, so an investor could use the model to assess the risk associated 
with a bond which S & P has not rated. The model can also be used to anticipate 
rating changes before they are announced by the agency. 

The dataset, which was donated by a Wall Street firm, is made up of 196 examples. 
Each training example consists of 10 financial ratios reflecting the fundamental 
characteristics of the issuing firm, along with an associated rating. The meaning of 
the financial ratios was not disclosed by the firm for proprietary reasons. The rating 
labels were converted into integers ranging from 1 to 16. The task was treated as a 
single-output regression problem rather than a 16-class classification problem. 

Monotonicity constraints suggest themselves naturally in this context. Although 
the meanings of the features are not revealed, it is reasonable to assume that they 
consist of quantities such as profitability, debt, etc. It seems intuitive that, for 
instance, the higher the profitability of the firm is , the stronger the firm is, and 
hence, the higher the bond rating should be. Monotonicity was therefore enforced 
in all input variables. 

Three different types of models (all trained on squared error) were compared: a 
linear model, standard two-layer feedforward sigmoidal neural networks, and mono­
tonic networks. The 196 examples were split into 150 training examples and 46 
test examples. In order to get a statistically significant evaluation of performance, 
a leave-k-out procedure was implemented in which the 196 examples were split 200 
different ways and each model was trained on the training set and tested on the 
test set for each split. The results shown are averages over the 200 splits. 

Two different approaches were used with the standard neural networks. In both 
cases, the networks were trained for 2000 batch-mode iterations of gradient descent 
with momentum and an adaptive learning rate, which sufficed to allow the networks 
to approach minima of the training error. The first method used all 150 examples 
for direct training and minimized the training error as much as possible. The 
second technique split the 150 examples into 110 for direct training and 40 used for 
validation, i.e., to determine when to stop training. Specifically, the mean-squared­
error on the 40 examples was monitored over the course of the 2000 iterations, 
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and the state of the network at the iteration where lowest validation error was 
obtained was taken as the final network to be tested on the test set. In both 
cases, the networks were initialized with small random weights. The networks had 
direct input-output connections in addition to hidden units in order to facilitate the 
implementation of the linear aspects of the target function. 

The monotonic networks were trained for 1000 batch-mode iterations of gradient 
descent with momentum and an adaptive learning rate. The parameters of each 
hyperplane in the network were initialized to be the parameters of the linear model 
obtained from the training set, plus a small random perturbation. This procedure 
ensured that the network was able to find a reasonably good fit to the data. Since 
the meanings of the features were not known, it was not known a priori whether 
increasing or decreasing mono tonicity should hold for each feature . The directions 
of monotonicity were determined by observing the signs of the weights of the linear 
model obtained from the training data. 

Model training error test error 
Linear 3.45 ± .02 4.09 ± .06 

10-2-1 net 1.83 ± .01 4.22 ± .14 
10-4-1 net 1.22 ± .01 4.86 ± .16 
10-6-1 net 0.87 ± .01 5.57 ± .20 
10-8-1 net 0.65 ± .01 5.56 ± .16 

Table 1: Performance of linear model and standard networks on bond rating problem 

The results support the hypothesis of a monotonic (or at least roughly monotonic) 
target function. As Table 1 shows, standard neural networks have sufficient flex­
ibility to fit the training data quite accurately (n-k-l network means a 2-layer 
network with n inputs, k hidden units, and 1 output). However, their excessive, 
non-monotonic degrees of freedom lead to overfitting, and their out-of-sample per­
formance is even worse than that of a linear model. The use of early stopping 
alleviates the overfitting and enables the networks to outperform the linear model. 
Without the monotonicity constraint, however, standard neural networks still do 
not perform as well as the monotonic networks. The results seem to be quite robust 
with respect to the choice of number of hidden units for the standard networks and 
number and size of groups for the monotonic networks. 

Model training error test error 
10-2-1 net 2.46 ± .04 3.83 ± .09 
10-4-1 net 2.19 ± .05 3.82± .08 
10-6-1 net 2.14 ± .05 3.77 ± .07 
10-8-1 net 2.13 ± .06 3.86 ± .09 

Table 2: Performance of standard networks using early stopping on bond rating 
problem 

5 Conclusion 

We presented a model, the monotonic network, in which monotonicity constraints 
can be enforced exactly, without adding a second term to the usual objective func­
tion. A straightforward method for implementing and training such models was 
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Model training error test error 
2 groups, 2 planes per group 2.78 ± .05 3.71 ± .07 
3 groups, 3 planes per group 2.64 ± .04 3.56 ± .06 
4 groups, 4 planes per group 2.50 ± .04 3.48 ± .06 
5 groups, 5 planes per group 2.44 ± .03 3.43 ± .06 

Table 3: Performance of monotonic networks on bond rating problem 

demonstrated, and the method was shown to outperform other methods on a real­
world problem. 

Several areas of research regarding monotonic networks need to be addressed in 
the future. One issue concerns the choice of the number of groups and number of 
planes in each group. In general, the usual bias-variance tradeoff that holds for 
other models will apply here, and the optimal number of groups and planes will be 
quite difficult to determine a priori. There may be instances where additional prior 
information regarding the convexity or concavity of the target function can guide 
the decision, however. Another interesting observation is that a monotonic network 
could also be implemented by reversing the maximum and minimum operations, 
i.e., by taking the maximum over groups where each group outputs the minimum 
over all of its hyperplanes. It will be worthwhile to try to understand when one 
approach or the other is most appropriate. 
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