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Abstract 

We implement a model of obstacle avoidance in flying insects on a small, 
monocular robot. The result is a system that is capable of rapid navigation 
through a dense obstacle field. The key to the system is the use of zigzag 
behavior to articulate the body during movement. It is shown that this behavior 
compensates for a parallax blind spot surrounding the focus of expansion nor­
mally found in systems without parallax behavior. The system models the coop­
eration of several behaviors: halteres-ocular response (similar to VOR), 
optomotor response, and the parallax field computation and mapping to motor 
system. The resulting system is neurally plausible, very simple, and should be 
easily hosted on a VLSI hardware. 

1 INTRODUCTION 

Srinivasan and Zhang (1993) describe behavioral evidence for two distinct movement 
detecting systems in bee: (1) A direction selective pathway with low frequency response 
characteristics serving the optomotor response and (2) A non-direction selective move­
ment system with higher frequency response serving functions of obstacle avoidance and 
the 'tunnel centering' response where the animal seeks a flight path along the centerline of 
a narrow corridor. Recently, this parallel movement detector view has received support 
from anatomical evidence in fly (Douglass and Strausfeld, 1996). We are concerned here 
with the implications of using non-direction selective movement detectors for tasks such 
as obstacle avoidance. 

A reasonable model of a non-direction selective pathwa:¥ would be that this pathway is 
computing the absolute value of the optic flow, i.e. s = II[x, Y111 where x, y are the 
components of the optic flow field on the retina at the point [x, y 1 . 

What is the effect of using the absolute value of the flow field and throwing away 
direction information? In section 2 we analyze the effect of a non-direction selective 
movement field. We understand from this analysis that rotational information, and the 
limited dynamic range of real sensors contaminates the non-direction selective field and 
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probably prevents the use of this technique in an area around the direction heading of the 
observer. 

One technique to compensate for this 'parallax blind spot' is by periodically changing the 
direction of the observer. Such periodic movements are seen in insects as well as lower 
vertebrates and it is suggestive that these movements may compensate for this basic 
problem. 

In Section 3, we describe a robotic implementation using a crude non-direction selective 
movement detector based on a rectified temporal derivative of luminosity. Each ' neuron' 
in the model retina issues a vote to control the motors of the robot. This system, though 
seemingly naively simple, compares favorably with other robotic implementations that 
rely on the optic flow or a function of the optic flow (divergence). These techniques 
typically require a large degree of spatial temporal averaging and seem computationally 
complex. In addition, our model agrees better with with the biological evidence. 

Finally, the technique presented here is amenable to implementation in custom aVLSI or 
mixed a VLSIIdVLSI chips. Thus it should be possible to build a subminiature visually 
guided navigation system with several (one?) low-power simple custom chips. 

2 ANALYSIS OF NON-DIRECTION SELECTIVE MOVEMENT 
DETECTION SYSTEM 

Let us assume a perspective projection 

(1) 

where A. is the focal length of the lens, X, Y, Z is the position of a point in the environ­
ment, and x, y is the projection of that point on the retinal plane. The velocity of the image 
of a moving point in the world can be found by differentiating (1) with respect to time: 

(2) 

If we assume that objects in the environment are fixed in relation to one-a~-other and that 
the observer is moving with relativT translational velocity Cv = [vx Vy v J and relative 
rotational velocity cn = rrox roy roJ to the environment given in frame c, a point in the 
environment has relati~e v~loclty: 

(3) 

Now substituting in (2): 

~ = ~l: ~Jv.+{:> -~~;' j'n. (4) 

and taking the absolute value of the optic flow : 

r;; = '~l"x- ~(Xy ... + .. y,x' + 1)+ y",l)' +~+y+ ~( -.. p' + \)+xY"y +x",l]j (5) 

where we have made the substitution: [X/2 Y/~ -t [(1 IlJ (that is, the heading direction). 

We can see that the terms involving [rox rov rozl cannot be separated from the x, y terms. If 
we assume that [rox roy roJ = 0 then we can r~arrange the equation as: 
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.-l() _ITZI_ lsi 
L> s -1Zf-

AJ[(X-a)2 + (y_~)2J 
(6) 

in the case of Z translation. If ITzl = 0 then we have: 

~ -1(s) = 1 = lsi (7) 
IZI AJT 2 + T 2 

x y 

this corresponds to the case of pure lateral translations. Locusts (as well as some verte­
brates) use peering or side to side movements to gauge distances before jumping. 

We call the quantity in (6) inverse relative depth. Under the correct circumstances it is 
equivalent to the reciprocal of time to contact. 

Equation (6) can be restated as: ~-l(s) = gjS where g is a gain factor that depends on the 
current direction heading and the position in the retina. This gain factor can be imple­
mented neurally as a shunting inhibition, for example. 

This has the following implications. If the observer is using a non-direction sensitive 
movement detector then (A) it must rotationally stabilize its eyes (B) it must dynamically 
alter the gain of this infonnation in a pathway between the retinal input and motor output 
or it must always have a constant direction heading and use constant gain factors. 

In real systems there is likely to be imperfection in rotational stabilization of the observer 
as well as sensors with limited dynamic range. To understand the effect of these, let us 
assume that there is a base-line noise level 0 and we assume that this defines a minimum 
threshold substituting s = 0, we can find a level curve for the minimum detectability of 
an object, i.e.: 

(8) 

Thus, for constant depth and for 0 independent of the spatial position on the retina, the 
level curve is a circle. The circle increases in radius with increasing distance, and noise, 
and decreases with increasing speed. The circle is centered around the direction heading. 

The solution to the problem of a 'parallax blind spot' is to make periodic changes of 
direction. This can be accomplished in an open loop fashion or, perhaps, in an image 
driven fashion as suggested by Sobey (1994). 

3 ROBOT MODEL 

Figure la is a photograph of the robot model. The robot's base is a Khepera Robot. The 
Khepera is a small wheeled robot a little over 2" in diameter and uses differential drive 
motors. The robot has been fitted with a solid-state gyro attached to its body. This 
gyroscope senses angular velocities about the body axis and is aligned with the axis of the 
camera joint. A camera, capable of rotation about an axis perpendicular to the ground 
plane, is also attached. The camera has a field of view of about 90 0 and can swing of 
±90° . The angle of the head rotation is sensed by a small potentiometer. 

For convenience, each visual process is implemented on a separate Workstation (SGI 
Indy) as a heavyweight process. Interprocess communication is via PVM distributed 
computing library. Using a distributed processing model, behaviors can be dynamically 
added and deleted facilitating analysis and debugging. 

3.1 ROBOT CONTROL SYSTEM 

The control is divided into control modules as illustrated in Fig 2. At the top of the 
drawing we see a gaze stabilization pathway. This uses a gyro (imitating a halteres organ) 
for stabilization of rapid head movements. In addition, a visual pathway, using direction 
selective movement detector (DSMD) maps is used for slower optomotor response. Each 
of the six maps uses correlation type detectors (Borst and Egelhaaf, 1989). Each map is 
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Figure 1. Physical setup. (A) Modified Khepera Robot with camera and gyro 
mounted. (B) Typical obstacle field run experiment. 
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tuned to a different horizontal velocity (three for left image translations and three for right 
image translations). 

The lower half of the drawing shows the obstacle avoidance pathway. A crude non­
direction selective movement detector is created using a simple temporal derivative. The 
use of this as a movement detector was motivated by the desire to eventually replace the 
camera front end with a Neuromorphic chip. Temporal derivative chips are readily avail­
able (Delbrtick and Mead, 1991). 

Next we reason that the temporal derivative gives a crude estimate of the ~bsolute value of 
the optic flow. For example if we expect only horizontal flows then: E xX = - E t (Horn 
and Shunck, 1981). Here E, is the temporal derivative of the luminosity and gA; is the 
spatial derivative. If we sample over a patch of the image, Ex will take on a range of 
values. If we take the average rectified temporal derivative over a patch then 
Ixl = I-E,I/IExl. Thus the average rectified temporal derivative over a patch will give a 
velocity proportional the absolute value of the optic flow. 

In order to make the change to motor commands, we use a voting scheme. Each pixel in 
the nondirection selective movement detector field (NDSMD) votes on a direction for the 
robot. The left pixels for a right turn and the right pixels vote for a left turn. The left and 
right votes are summed. In certain experiments described below the difference of the left 
and right votes was used to drive the rotation of the robot. In others a symmetry breaking 
scheme was used. It was observed that with an object dead ahead of the robot, often the 
left and right activation would have high but nearly equal activation. In the symmetry 
breaking scheme, the side with the lower activation was further decrease by a factor of 
50%. This admittedly ad hoc solution remarkably improved the performance in the non­
zig-zag case as noted below. 

The zig-zag behavior is implemented as a feedforward command to the motor system and 
is modeled as: 

Khepera . 
COZigZag = stn(cot)K 

Finally, a constant forward bias is added to each wheel so the robot makes constant 
progress. K is chosen empirically but in principle one should be able to derive it using the 
analysis in section 2. 

As described above, the gaze stabilization module has control of head rotation and the zig­
zag behavior and the depth from parallax behavior control the movement of the robot's 
body. During normal operation, the head may exceed the ±90° envelope defined by the 
mechanical system. This problem can be addressed in several ways among them are by 
making a body saccade to bring the body under the head or making a head saccade to align 
the head with the body. We choose the later approach solely because it seemed to work 
better in practice. 
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Figure 2. ZigZag Navigation model is composed of a gaze stabilization system 
(top) and an obstacle avoidance system (bottom). See text. 

3.2 BIOLOGICAL INSPIRATION FOR MODEL 

Course-grained visual pathways are modeled using inspiration from insect neurobiology. 
The model of depth from parallax is inspired by details given in Srinivasan & Zhang 
(1993) on work done in bees. Gaze stabilization using a fast channel, mediated by the 
halteres organs, and a slow optomotor response is inspired by a description of the blowfly 
Calliphora as reviewed by Hengstenberg (1991). 

4 EXPERIMENTS 

Four types of experimental setups were used. These are illustrated in Fig 3. In setup 1 the 
robot must avoid a dense field of obstacles (empty soda cans). This is designed to test the 
basic competence of this technique. In setup 2, thin dowels are place in the robot's path. 
This tests the spatial resolving capability of the robot. Likewise setup 3 uses a dense 
obstacle field with one opening replaced by a lightly textured surface. 

Finally, experimental setup 4 uses a single small object (1cm black patch) and tests the 
distance at which the robot can 'lock-on' to a target. In this experiment, the avoidance 
field is sorted for a maximal element over a given threshold. A target cross is placed at this 
maximal element. The closest object should correspond with this maximal element. If a 
maximal element over a threshold is identified for a continuous 300ms and the target cross 
is on the correct target, the robot is stopped and its distance to the object is measured. The 
larger the distance, the better. 

5 RESULTS 

The results are described briefly here. In the setup 1 without the use of symmetry break­
ing, the scores were ZigZag: 10 Success, 0 Failures and the non-ZigZag: 4 Success and 6 
Failures. With Symmetry Breaking installed the results were: ZigZag: 49 Success, 3 
Failures and the non-ZigZag: 44 Success and 9 failures. 

In the case palisades test: ZigZag: 22 Success, 4 Failures and the non-ZigZag: 14 Success 
and 11 failures. 

In the false opening case: ZigZag: 8 Success, 2 Failures and the non-ZigZag: 6 Success 
and 4 Failures. 

Finally, in the distance-to-Iock setup, a lock was achieved at an average distance 21.3 CM 
(15 data points) for zigzag and 9.6 cm (15 data points) for the non-zigzag case. 
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Figure 3. Illustrations of the four experimental setups. 

We tentatively conclude that zig-zag behavior should improve performance in robot and 
in animal navigation. 

6 DISCUSSION 

In addition to the robotic implementation presented here, there have been many other 
techniques presented in the literature. Most relevant is Sobey (1994) who uses a zigzag 
behavior for obstacle avoidance. In this work, optic flow is computed through a process of 
discrete movements where 16 frames are collected, the robot stops, and the stored frames 
are analyzed for optic flow. The basic strategy is very clever: Always choose the next 
move in the direction of an identified object. The reasoning is that since we know the 
distance to the object in this direction, we can confidently move toward the object, 
stopping before collision. The basic idea of using zig-zag behavior is similar except that 
the zig-zagging is driven by perceptual input. In addition, the implementation requires 
estimation of the flow field requiring smoothing over numerous images. Finally, Sobey 
uses Optic Flow and we use the absolute value of the Optic Flow as suggested by biology. 

Franceschini et al (1992) reports an analog implementation that uses elementary move­
ment detectors. A unique feature is the non-uniform sampling and the use of three separate 
arrays. One array uses a sampling around the circumference. The other two sampling 
systems are mounted laterally on the robot and concentrate in the 'blind-spot' immediately 
in front of the robot. It is not clear that the strategy of using three sensor arrays, spatially 
separated, and direction selective movement detectors is in accord with the biological 
constraints. 

Santos-Victor et al (1995) reports a system using optic flow and having lateral facing 
cameras. Here the authors were reproducing the centering reflex and did not focus on 
avoiding obstacles in front of the robot. Coombs and Roberts (1992,1993) use a similar 
technique. Weber et al (1996) describe wall following and stopping in front of an obstacle 
using an optic flow measure. 

Finally, a number of papers report the use of flow field divergence, apparently first 
suggested by Nelson and Aloimonos (1989). This requires the computation of higher 
derivatives and requires significant smoothing. Even in this case, there is a problem of a 
'parallax hole.' See Fig. 3 of that article, for example. In any case they did not implement 
their idea on a mobile robot. However, this approach has been followed up with an 
implementation in a robot by Camus et al (1996) reporting good results. 

The system described here presents a physical model of insect like behavior integrated on 
a small robotic platform. Using results derived from an analysis of optic flow, we con­
cluded that a zig-zag behavior in the robot would allow it to detect obstacles in front of the 
robot by periodically articulating the blind spot. 

The complexity of the observed behavior and the simplicity of the control is striking. The 
robot is able to navigate through a field of obstacles, always searching out a freeway for 
movement. 
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The integrated behavior outlined here should be a good candidate for a neuromorphic 
implementation. A multichip (or single chip?) system could be envisioned using a rela­
tively simple non-directional 2-d movement detector. Two arrays of perpendicular I-d 
array of movement detectors should be sufficient for the optomotor response. This infor­
mation could then be mapped to a circuit comprised of a few op-amp adder circuits and 
then sent to the head and body motors. Even the hal teres organ could be simulated with a 
silicon fabricated gyroscope. The results would be an extremely compact robot capable of 
autonomous, visually guided navigation. 

Finally, from our analysis of optic flow, we can make a reasonable prediction abuut the 
neural wiring in flying insects. The estimated depth of objects in the environment depends 
on where the object falls on the optic array as well as the ratio of translation to forward 
movement. Thus a bee or a fly should probably modulate its incoming visual signal to 
account for this time varying interpretation of the scene. We would predict that there 
should be motor information, related to the ratio of forward to lateral velocities would be 
projected to the non-directional selective motion detector array. This would allow a valid 
time varying interpretation of the scene in a zig-zagging animal. 
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