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Abstract

Classification of finite sequences without explicit knowledge of their
statistical nature is a fundamental problem with many important
applications. We propose a new information theoretic approach
to this problem which is based on the following ingredients: (i) se-
quences are similar when they are likely to be generated by the same
source; (ii) cross entropies can be estimated via “universal compres-
sion”; (iii) Markovian sequences can be asymptotically-optimally
merged.

With these ingredients we design a method for the classification of
discrete sequences whenever they can be compressed. We introduce
the method and illustrate its application for hierarchical clustering
of languages and for estimating similarities of protein sequences.

1 Introduction

While the relationship between compression (minimal description) and supervised
learning is by now well established, no such connection is generally accepted for
the unsupervised case. Unsupervised classification is still largely based on ad-hock
distance measures with often no explicit statistical justification. This is particu-
larly true for unsupervised classification of sequences of discrete symbols which is
encountered in numerous important applications in machine learning and data min-
ing, such as text categorization, biological sequence modeling, and analysis of spike
trains.

The emergence of “universal” (i.e. asymptotically distribution independent) se-
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quence compression techniques suggests the existence of “universal” classification
methods that make minimal assumptions about the statistical nature of the data.
Such techniques are potentially more robust and appropriate for real world appli-
cations.

In this paper we introduce a specific method that utilizes the connection between
universal compression and unsupervised classification of sequences. Our only un-
derlying assumption is that the sequences can be approximated (in the information
theoretic sense) by some finite order Markov sources. There are three ingredients to
our approach. The first is the assertion that two sequences are statistically similar
if they are likely to be independently generated by the same source. This likelihood
can then be estimated, given a typical sequence of the most likely joint source, using
any good compression method for the sequence samples. The third ingredient is a
novel and simple randomized sequence merging algorithm which provably generates
a typical sequence of the most likely joint source of the sequences, under the above
Markovian approximation assumption.

Our similarity measure is also motivated by the known “two sample problem”
[Leh59] of estimating the probability that two given samples are taken from the
same distribution. In the i.i.d. (Bernoulli) case this problem was thoroughly inves-
tigated and the optimal statistical test is given by the sum of the empirical cross
entropies between the two samples and their most likely joint source. We argue
that this measure can be extended for arbitrary order Markov sources and use it to
construct and sample the most likely joint source.

The similarity measure and the statistical merging algorithm can be naturally com-
bined into classification algorithms for sequences. Here we apply the method to
hierarchical clustering of short text segments in 18 European languages and to eval-
uation of similarities of protein sequences. A complete analysis of the method, with
further applications, will be presented elsewhere [EFT97].

2 Measuring the statistical similarity of sequences

Estimating the statistical similarity of two individual sequences is traditionally done
by training a statistical model for each sequence and then measuring the likelihood
of the other sequence by the model. Training a model entails an assumption about
the nature of the noise in the data and this is the rational behind most “edit
distance” measures, even when the noise model is not explicitly stated.

Estimating the log-likelihood of a sequence-sample over a discrete alphabet X by
a statistical model can be done through the Cross Entropy or Kullback-Leibler
Divergence[CT91] between the sample empirical distribution p and model distri-
bution ¢, defined as:

Dz (lla) = 3 p (o) log 242 M)

— g(o)

The KL-divergence, however, has some serious practical drawbacks. It is non-
symmetric and unbounded unless the model distribution g is absolutely continuous
with respect to p (i.e. ¢ = 0 = p = 0). The KL-divergence is therefore highly sensi-
tive to low probability events under q. Using the “empirical” (sample) distributions
for both p and ¢ can result in very unreliable estimates of the true divergences. Es-
sentially, D, [p||g] measures the asymptotic coding inefficiency when coding the
sample p with an optimal code for the model distribution q.

The symmetric divergence, i.e. D (p,q) = Dkr[p|lg] + Dk [g||p), suffers from
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similar sensitivity problems and lacks the clear statistical meaning.

2.1 The “two sample problem”

Direct Bayesian arguments, or alternately the method of types [CK81], suggest that

the probability that there exists one source distribution M for two independently
drawn samples, z and y [Leh59], is proportional to

fd# (M) Pr(z|M)-Pr(y|M) = /d,u (M) - 2~ (21Px L [P |IM]+]y| Dk [py [1M]) (2)

where du(M) is a prior density of all candidate distributions, p, and p, are the
empirical (sample) distributions, and |z| and |y| are the corresponding sample sizes.

For large enough samples this integral is dominated (for any non-vanishing prior)
by the maximal exponent in the integrand, or by the most likely joint source of
and y, M), defined as

M) = argmin {|z| Dk L (p||M") + |y| Dk (py||M")} . (3)

where 0 < A = |z|/(|z| + |y|) <€ 1 is the sample mizture ratio. The convexity of the
KL-divergence guarantees that this minimum is unique and is given by

My = Apz + (1 = A) py,
the A — mizture of p, and p,.

The similarity measure between two samples, d(z,y), naturally follows as the min-
imal value of the above exponent. That is,

Definition 1 The similarity measure, d(z,y) = Dx(ps,py), of two samples z and
y, with empirical distributions p, and p, respectively, is defined as

d(z,y) = Dr(pz,py) = ADkr (pz||Mx) + (1 = X) Dk (py|| M)) (4)
where M is the A\-mizture of p, and p,.

The function D, (p,¢g) is an extension of the Jensen-Shannon divergence (see e.g.
[Lin91]) and satisfies many useful analytic properties, such as symmetry and bound-
edness on both sides by the L;-norm, in addition to its clear statistical meaning.
See [Lin91, EFT97] for a more complete discussion of this measure.

2.2 Estimating the D) similarity measure

The key component of our classification method is the estimation of D) for individ-
ual finite sequences, without an explicit model distribution.

Since cross entropies, Dk, express code-length differences, they can be estimated
using any efficient compression algorithm for the two sequences. The existence
of “universal” compression methods, such as the Lempel-Ziv algorithm (see e.g.
[CT91]) which are provably asymptotically optimal for any sequence, give us the
means for asymptotically optimal estimation of D), provided that we can obtain a
typical sequence of the most-likely joint source, M.

We apply an improvement of the method of Ziv and Merhav [ZM93] for the esti-
mation of the two cross-entropies using the Lempel-Ziv algorithm given two sample
sequences [BE97]. Notice that our estimation of D) is as good as the compression
method used, namely, closer to optimal compression yields better estimation of the
similarity measure.

It remains to show how a typical sequence of the most-likely joint source can be
generated.
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3 Joint Sources of Markovian Sequences

In this section we first explicitly generalize the notion of the joint statistical source to
finite order Markov probability measures. We identify the joint source of Markovian
sequences and show how to construct a typical random sample of this source.

More precisely, let z and y be two sequences generated by Markov processes with
distributions P and @, respectively. We present a novel algorithm for the merging
the two sequences, by generating a typical sequence of an approximation to the
most likely joint source of z and y. The algorithm does not require the parameters
of the true sources P and @ and the computation of the sequence is done directly
from the sequence samples = and y.

As before, ¥ denotes a finite alphabet and P and @ denote two ergodic Markov
sources over X of orders Kp and K, respectively. By equation 3, the A-mizture
joint source My of P and Q is M) = argminyy AD g (P||M')+(1-A)Dkr(Q||M'),
where for sequences Dk (P||M) = limsup,_,,, + 3, cxn P(x) log %(%. The fol-
lowing theorem identifies the joint source of P and Q.

Theorem 1 The unique A-mizture joint source My of P and Q, of order K =
max{Kp,Kq}, is given by the following conditional distribution. For each s €
K aeyg,

AP(s)
AP(s) + (1 =2)Q(s)

(1 —2Q(s)
AP(s) + (1 - N)Q(s)

My (als) = P(als) + Q(als) -

This distribution can be naturally extended to n sources with priors Ay,..., A,.

3.1 The “sequence merging” algorithm

The above theorem can be easily translated into an algorithm. Figure 1 describes a
randomized algorithm that generates from the given sequences = and y, an asymp-
totically typical sequence z of the most likely joint source, as defined by Theorem
1, of P and Q.

Initialization:
e 2[0] = choose a symbol from z with probability A or y with probability 1 — A
e 1=0
Loop:
Repeat until the approximation error is lower then a prescribe threshold
e 3, := max length suffix of 2 appearing somewhere in z
e 5, := max length suffix of z appearing somewhere in y

- APrg(sz)
* A(A,8z,8y) = APrg(a,)+z;-a\)Prv(a‘,]

e 7 = choose z with probability A(], s., sy) or y with probability 1 —A(A, sz, sy)

e r(s;) = randomly choose one of the occurrences of s, in r
e z[i + 1] = the symbol appearing immediately after r (s,) at
e i1=1+1

End Repeat

Figure 1: The most-likely joint source algorithm












