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Abstract 

We discuss a strategy for polychotomous classification that involves 
estimating class probabilities for each pair of classes, and then cou­
pling the estimates together. The coupling model is similar to the 
Bradley-Terry method for paired comparisons. We study the na­
ture of the class probability estimates that arise, and examine the 
performance of the procedure in simulated datasets. The classifiers 
used include linear discriminants and nearest neighbors: applica­
tion to support vector machines is also briefly described. 

1 Introduction 

We consider the discrimination problem with J{ classes and N training observations. 
The training observations consist of predictor measurements x = (Xl, X2, ... Xp) on 
p predictors and the known class memberships. Our goal is to predict the class 
membership of an observation with predictor vector Xo 

Typically J{ -class classification rules tend to be easier to learn for J{ = 2 than for 
f{ > 2 - only one decision boundary requires attention. Friedman (1996) suggested 
the following approach for the the K-class problem: solve each of the two-class 
problems, and then for a test observation, combine all the pairwise decisions to 
form a J{ -class decision. Friedman's combination rule is quite intuitive: assign to 
the class that wins the most pairwise comparisons. 
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Friedman points out that this rule is equivalent to the Bayes rule when the class 
posterior probabilities Pi (at the test point) are known : 

argm~[Pd = argma~[LI(pd(Pi + Pj) > Pj/(Pi + Pj»] 
Jti 

Note that Friedman's rule requires only an estimate of each pairwise decision. Many 
(pairwise) classifiers provide not only a rule, but estimated class probabilities as well. 
In this paper we argue that one can improve on Friedman's procedure by combining 
the pairwise class probability estimates into a joint probability estimate for all J{ 

classes. 

This leads us to consider the following problem. Given a set of events AI, A 2 , ... A.K, 

some experts give us pairwise probabilities rij = Prob(AilA or Aj) . Is there a set 
of probabilities Pi = Prob(Ai) that are compatible with the 1'ij? 

In an exact sense, the answer is no. Since Prob( Ad Ai or Aj) = Pj /(Pi + pj) and 
2: Pi = 1, we are requiring that J{ -1 free parameters satisfy J{ (/{ -1) /2 constraints 
and , this will not have a solution in general. For example, if the 1'ij are the ijth 
entries in the matrix 

(
. 0.9 0.4) 

0.1 . 0.7 
0.6 0.3 . 

(1) 

then they are not compatible with any pi's. This is clear since r12 > .5 and 1'23 > .5, 
but also r31 > .5. 

The model Prob(A i IAi or Aj) = Pj /(Pi + pj) forms the basis for the Bradley­
Terry model for paired comparisons (Bradley & Terry 1952) . In this paper we 
fit this model by minimizing a Kullback-Leibler distance criterion to find the best 
approximation foij = pd('Pi + pj) to a given set of 1'il's. We carry this out at each 
predictor value x, and use the estimated probabilities to predict class membership 
at x. 

In the example above, the solution is p = (0.47, 0.25, 0.28). This solution makes 
qualitative sense since event Al "beats" A 2 by a larger margin than the winner of 
any of the other pairwise matches. 

Figure 1 shows an example of these procedures in action. There are 600 data points 
in three classes, each class generated from a mixture of Gaussians. A linear dis­
criminant model was fit to each pair of classes, giving pairwise probability estimates 
1'ij at each x. The first panel shows Friedman's procedure applied to the pairwise 
rules. The shaded regions are areas of indecision, where each class wins one vote. 
The coupling procedure described in the next section was then applied , giving class 
probability estimates f>(x) at each x. The decision boundaries resulting from these 
probabilities are shown in the second panel. The procedure has done a reasonable 
job of resolving the confusion, in this case producing decision boundaries similar 
to the three-class LDA boundaries shown in panel 3. The numbers in parentheses 
above the plots are test-error rates based on a large test sample from the same pop­
ulation. Notice that despite the indeterminacy, the max-wins procedure performs 
no worse than the coupling procedure. and both perform better than LDA. Later 
we show an example where the coupling procedure does substantially better than 
max-wms. 
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Pairwise LDA + Max (0.132) Pairwise LOA + Coupling (0.136) 3·Class LOA (0.213) 

Figure 1: A three class problem, with the data in each class generated from a mixture 
of Gaussians. The first panel shows the maximum-win procedure. The second panel 
shows the decision boundary from coupling of the pairwise linear discriminant rules 
based on d in (6). The third panel shows the three-class LDA boundaries. Test-error 
rates are shown in parentheses. 

This paper is organized as follows. The coupling model and algorithm are given 
in section 2. Pairwise threshold optimization, a key advantage of the pairwise 
approach, is discussed in section 3. In that section we also examine the performance 
of the various methods on some simulated problems, using both linear discriminant 
and nearest neighbour rules. The final section contains some discussion . 

2 Coupling the probabilities 

Let the probabilities at feature vector x be p(x) = (PI (x) , ... PK (x)). In this section 
we drop the argument x , since the calculations are done at each x separately. 

\Ve assume that for each i -# j, there are nij observations in the training set and 
from these we have estimated conditional probabilities Tij = Prob( iii or j). 

Our model is 

or equivalently 

a log-nonlinear model. 

J..Lij 

Binomial( nij , J-Lij ) 
Pi 

Pi + Pj 

log J-Lij = log (Pi ) - log (Pi + Pj), 

(2) 

(3) 

We wish to find Pi'S so that the Uij'S are close to the Tij'S. There are K - 1 
independent parameters but K(I{ - 1)/2 equations, so it is not possible in general 
to find .Pi's so that {iij = Tij for all i, j. 

Therefore we must settle for {iij'S that are close to the observed Tij'S. Our closeness 
criterion is the average (weighted) Kullback-Leibler distance between Tij and J-Lij : 

(4) 
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and we find p to minimize this function . 

This model and criterion is formally equivalent to the Bradley-Terry model for 
preference data. One observes a proportion fij of nij preferences for item i, and 
the sampling model is binomial, as in (2) . If each of the fij were independent, then 
R(p) would be equivalent to the log-likelihood under this model. However our fij 
are not independent as they share a common training set and were obtained from 
a common set of classifiers. Furthermore the binomial models do not apply in this 
case; the fij are evaluations of functions at a point, and the randomness arises in 
the way these functions are constructed from the training data. We include the nij 

as weights in (4); this is a crude way of accounting for the different precisions in 
the pairwise probability estimates. 

The score (gradient) equations are: 

Lnijj1ij = Lnijfij; i= 1,2 .... K (5) 
jti j#i 

subject to L Pi = 1. We use the following iterative procedure to compute the iN's: 

Algorithm 

1. Start with some guess for the Pi, and corresponding Pij. 

2. Repeat (i = 1,2, . .. , K, 1, ... ) until convergence: 

renormalize the Pi, and recompute the Pij. 

The algorithm also appears in Bradley & Terry (1952). The updates in step 2 at­
tempt to modify p so that the sufficient statistics match their expectation, but go 
only part of the way. We prove in Hastie & Tibshirani (1996) that R(p) increases 
at each step. Since R(p) is bounded above by zero, the procedure converges. At 
convergence, the score equations are satisfied, and the PijS and p are consistent. 
This algorithm is similar in flavour to the Iterative Proportional Scaling (IPS) pro­
cedure used in log-linear models. IPS has a long history, dating back to Deming & 
Stephan (1940). Bishop, Fienberg & Holland (1975) give a modern treatment and 
many references. 

The resulting classification rule is 

(6) 

Figure 2 shows another example similar to Figure 1, where we can compare the 
performance of the rules d and d. The hatched area in the top left panel is an 
indeterminate region where there is more than one class achieving max(pd. In the 
top right panel the coupling procedure has resolved this indeterminacy in favor of 
class 1 by weighting the various probabilities. See the figure caption for a description 
of the bottom panels. 
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PallWlse LOA + Max (0.449) Pairwise LOA + Coupling (0 358) 

LOA (0.457) aDA (0.334) 

Figure 2: A three class problem similar to that in figure 1, with the data in each 
class generated from a mixture of Gaussians. The first panel shows the maximum­
wins procedure d). The second panel shows the decision boundary from coupling of 
the pairwise linear discriminant rules based on d in (6). The third panel shows the 
three-class LDA boundaries, and the fourth the QDA boundaries. The numbers in 
the captions are the error rates based on a large test set from the same population. 

3 Pairwise threshold optimization 

As pointed out by Friedman (1996), approaching the classification problem in a 
pairwise fashion allows one to optimize the classifier in a way that would be com­
putationally burdensome for a J< -class classifier . Here we discuss optimization of 
the classification threshold. 

For each two class problem, let logit Pij(X) = dij(x). Normally we would classify to 
class i if dij (x) > O. Suppose we find that dij (x) > tij is better. Then we define 
dij (x) = dij (x) - tij, and hence pij (x) = logiC 1 di/x). We do this for all pairs, and 
then apply the coupling algorithm to the P~j (x) to obtain probabilities pi( x) . In this 
way we can optimize over J«J< - 1)/2 parameters separately, rather than optimize 
jointly over J< parameters. With nearest neigbours, there are other approaches to 
threshold optimization, that bias the class probability estimates in different ways. 
See Hastie & Tibshirani (1996) for details. An example of the benefit of threshofd 
optimization is given next. 

Example: ten Gaussian classes with unequal covariance 

In this simulated example taken from Friedman (1996), there are 10 Gaussian classes 
in 20 dimensions. The mean vectors of each class were chosen as 20 independent 
uniform [0,1] random variables . The covariance matrices are constructed from 
eigenvectors whose square roots are uniformly distributed on the 20-dimensional 
unit sphere (subject to being mutually orthogonal) , and eigenvalues uniform on 
[0.01,1.01]. There are 100 observations per class in the training set, and 200 per 
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class in the test set. The optimal decision boundaries in this problem are quadratic, 
and neither linear nor nearest-neighbor methods are well-suited. Friedman states 
that the Bayes error rate is less than 1%. 

Figure 3 shows the test error rates for linear discriminant analysis, J -nearest neigh­
bor and their paired versions using threshold optimization. We see that the coupled 
classifiers nearly halve the error rates in each case. In addition, the coupled rule 
works a little better than Friedman's max rule in each task. Friedman (1996) re­
ports a median test error rate of about. 16% for his thresholded version of pairwise 
nearest neighbor. 

Why does the pairwise t.hresholding work in this example? We looked more closely 
at the pairwise nearest neighbour rules rules that were constructed for this problem. 
The thresholding biased the pairwise distances by about 7% on average. The average 
number of nearest neighbours used per class was 4.47 (.122), while t.he standard J­
nearest neighbour approach used 6.70 (.590) neighbours for all ten classes. For all 
ten classes, the 4.47 translates into 44.7 neighbours. Hence relative to t.he standard 
J -NN rule, the pairwise rule, in using the threshold optimization to reduce bias, is 
able to use about six times as many near neighbours. 
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Figure 3: Test errors for 20 simulations of ten-class Gaussian example. 

4 Discussion 

Due to lack of space, there are a number of issues that we did not discuss here. In 
Hastie & Tibshirani (1996), we show the relationship between the pairwise coupling 
and the max-wins rule: specifically, if the classifiers return 0 or Is rather than 
probabilities, the two rules give the same classification. We also apply the pairwise 
coupling procedure to nearest neighbour and support vector machines. In the latter 
case, this provides a natural way of extending support vector machines, which are 
defined for two-class problems, to multi-class problems. 
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The pairwise procedures, both Friedman 's max-win and our coupling, are most 
likely to offer improvements when additional optimization or efficiency gains are 
possible in the simpler 2-class scenarios. In some situations they perform exactly 
like the multiple class classifiers. Two examples are: a) each of the pairwise rules 
are based on QDA: i.e. each class modelled by a Gaussian distribution with sep­
arate covariances, and then the rijS derived from Bayes rule; b) a generalization 
of the above, where the density in each class is modelled in some fashion, perhaps 
nonparametrically via density estimates or near-neighbor methods, and then the 
density estimates are used in Bayes rule. 

Pairwise LDA followed by coupling seems to offer a nice compromise between LDA 
and QDA, although the decision boundaries are no longer linear. For this special 
case one might derive a different coupling procedure globally on the logit scale , 
which would guarantee linear decision boundaries. Work of this nature is currently 
in progress with Jerry Friedman. 
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