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Abstract

For blind source separation, when the Fisher information matrix is
used as the Riemannian metric tensor for the parameter space, the
steepest descent algorithm to maximize the likelihood function in
this Riemannian parameter space becomes the serial updating rule
with equivariant property. This algorithm can be further simplified
by using the asymptotic form of the Fisher information matrix
around the equilibrium.

1 Introduction

The relative gradient was introduced by (Cardoso and Laheld, 1996) to design
multiplicative updating algorithms with equivariant property for blind separation
problems. The idea is to calculate differentials by using a relative increment instead
of an absolute increment in the parameter space. This idea has been extended to
compute the relative Hessian by (Pham, 1996).

For a matrix function f = f(W), the relative gradient is defined by

&z Of coup

Vf= WW : (1)
From the differential of f(W) based on the relative gradient, the following learning
rule is given by (Cardoso and Laheld, 1996) to maximize the function f:
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Also motivated by designing blind separation algorithms with equivariant property,
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the natural gradient defined by

S O cnp

Vi=awW' W (3)
was introduced in (Amari et al, 1996) which yields the same learning rule (2). The
geometrical meaning of the natural gradient is given by (Amari, 1996). More details
about the natural gradient can be found in (Yang and Amari, 1997) and (Amari,
1997).

The framework of the natural gradient learning was proposed by (Amari, 1997) . In
this framework, the ordinary gradient descent learning algorithm in the Euclidean
space is not optimal in minimizing a function defined in a Riemannian space. The
ordinary gradient should be replaced by the natural gradient which is defined by
operating the inverse of the metric tensor in the Riemannian space on the ordinary
gradient. Let w denote a parameter vector. It is proved by (Amari, 1997) that if
C(w) is a loss function defined on a Riemannian space {w} with a metric tensor G,
the negative natural gradient of C'(w), namely, —G'lg% is the steepest descent
direction to decrease this function in the Riemannian space. Therefore, the steepest

descent algorithm in this Riemannian space has the following form:

dw ,0C
G —.
dt n ow
If the Fisher information matrix is used as the metric tensor for the Riemannian

space and C(w) is replaced by the negative log-likelihood function, the above learn-
ing rule becomes the method of scoring ( Kay, 1993) which is the focus of this paper.

Both the relative gradient V and the natural gradient V were proposed in order to
design the multiplicative updating algorithms with the equivariant property. The
former is due to a multiplicative increment in calculating differential while the latter
is due to an increment based on a nonholonomic basis (Amari, 1997). Neither V
nor V depends on the data model. The Fisher information matrix is a special
and important choice for the Riemannian metric tensor for statistical estimation
problems. It depends on the data model. Operating the inverse of the Fisher
information matrix on the ordinary gradient, we have another gradient operator. It
is called a natural gradient induced by the Fisher information matrix.

In this paper, we show how to derive a multiplicative updating algorithm from
the method of scoring. This approach is different from those based on the relative
gradient and the natural gradient defined by (3).

2 Fisher Information Matrix For Blind Separation

Consider a linear mixing system:
Tz =As

where A € R*** ¢ = (z;,---,2,)T and 8 = (s1,---,8,)T. Assume that sources
are independent with a factorized joint pdf:

r(8) = H r(s;).

The likelihood function is
r(A 'z)

p(z; A) = A]
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where |A| = |det(A)|. Let W = A™! and y = Wz ( a demixing system), then we
have the log-likelihood function

n
L(W) =) logri(y:) + log |[W]|.
i=1

It is easy to obtain
OL _ ri(y:)

Bw,-_, Ti (y.) 4

where W is the (4,7) entry in W~ T = = (W™HT. Writing (4) in a matrix form,
we have

+ W_ (4)

oL
oW

where ®(y) = (6111, "+, bn(¥a))T, di(vs) = — 58 and F(y) = T - 8(y)yT.
The maximum likelihood algorithm based on the ordinary gradient 5‘%‘7 is

%K =n(I - 3(y)y" )W T =nF(y)w~T

which has the high computational complexity due to the matrix inverse W~'. The
maximum likelihood algorithm based on the natural gradient of matrix functions is

dw
Tt

=W T -8@z"=T-3yy W T=FywT (5)

=nVL =n(I - &(y)y")W. (6)

The same algorithm is obtained from <5~ ‘*W = nVLW by using the relative gradient.

An apparent reason for using this aIgorlthm is to avoid the matrix inverse W1
Another good reason for using it is due to the fact that the matrix W driven by
(6) never becomes singular if the initial matrix W is not singular. This is proved
by (Yang and Amari, 1997). In fact, this property holds for any learning rule of the
following type: -

o =Hu)W. (7)

Let < U,V >= Tr(UTV) denote the inner product of U and V € ®"*"*. When
W (t) is driven by the equation (7), we have

AWl —c AWl W o W w)T,

dt aW » dt
= Te(|W W H(y)W) = Te(H (1)) W|.
Therefore, .
W (2)] = W (0)] exp{ fo Te(H (y(r)))dr} ®)

which is non-singular when the initial matrix W (0) is non-singular.

The matrix function F(y) is also called an estimating function. At the equilibrium
of the system (6), it satisfies the zero condition E[F(y)] =0, i.e.,

E[¢i(y:)y;] = 6i; (9)
where d;; = 1 if i = j and 0 otherwise.

To calculate the Fisher information matrix, we need a vector form of the equation
(5). Let Vec(-) denote an operator on a matrix which cascades the columns of the
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matrix from the left to the right and forms a column vector. This operator has the
following property:

Vec(ABC) = (CT @ A)Vec(B) (10)
where ® denotes the Kronecker product. Applying this property, we first rewrite
(5) as

aL 0

W = VEC(aTi;-) = (W_l ® I)Vec(F(y)), (11)

and then obtain the Fisher information matrix

oL oL

G = El o) aVectw) )]

=W I)E[Vec(F(y))VecT(F(y))](W_T ®I). (12)
The inverse of G is

Gl=(WTeDD'(WeI (13)

where D = E[Vec(F(y))Vec” (F(y))).

3 Natural Gradient Induced By Fisher Information Matrix

Define a Riemannian space

V = {Vec(W); W € Gl(n)}
in which the Fisher information matrix G is used as its metric. Here, Gi(n) is the
space of all the n X n invertible matrices.

Let C(W) be a matrix function to be minimized. It is shown by (Amari, 1997) that

. S : . Y | aC
the steepest descent direction in the Riemannian space V is —G Ve (W5

Let us define the natural gradient in V by

- ac
— (wT -3
VC(W)=(W"I)D™(W®I) Ve (W)
which is called the natural gradient induced by the Fisher information matrix. The
time complexity of computing the natural gradient in the space V is high since
inverting the matrix D of n? x n? is needed.

(14)

Using the natural gradient in V to maximize the likelihood function L(W) or the
method of scoring, from (11) and (14) we have the following learning rule

Vec(% =n(WT @ I)D*Vec(F(y)) (15)
We shall prove that the above learning rule has the equivariant property.

Denote Vec™! the inverse of the operator Vec. Let matrices B and A be of n? x n?
and n X n, respectively. Denote B(i,-) the i-th row of B and B; = Vec™!(B(3,)),
i=1,---,n% Define an operator Bx as a mapping from R"*" to R"*":

<B;,A> -+ <Bji_n.1,A>
B*A:
<B,,A> --: < B,:,A>

where < -, > is the inner product in ®7*™. With the operation %, we have
< B;,A> <B;,A>
BVec(A) = : = Vec(Vec ™ ( ¥ )) = Vec(B x A),
< B2, A> < Bp:,A>
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ie.,
BVec(A) = Vec(Bx A).

Applying the above relation, we first rewrite the equation (15) as
Vec(%—‘:,) =n(WT ® I)Vec(D™' * F(y)),

then applying (10) to the above equation we obtain

dwW 5
S =D« Fy)W. (16)

Theorem 1 For the blind separation problem, the mazimum likelihood algorithm
based on the natural gradient induced by the Fisher information matriz or the method
of scoring has the form (16) which is a multiplicative updating rule with the equiv-
ariant property.

To implement the algorithm (16), we estimate D by sample average. Let f;;(y) be
the (z,7) entry in F(y). A general form for the entries in D is

dijkt = Efi; (y) fra(9)]

which depends on the source pdfs r;(s;). When the source pdfs are unknown, in
practice we choose r;(s;) as our prior assumptions about the source pdfs. To simplify
the algorithm (16), we replace D by its asymptotic form at the solution points
a = (t184(1)," " ,c,,s,,{,,))T where (¢(1),---,0(n)) is a permutation of (1,---,n).

Regarding the structure of the asymptotic D, we have the following theorem:

Theorem 2 Assume that the pdfs of the sources s; are even functions.
Then at the solution point a = (¢155(1),"**,CnSa(n))’; D is a diagonal matriz and
its n? diagonal entries have two forms, namely,

E[fij(a)fij(a)] = piAj, fori#j and

E[(fi(a))®] = v

where p; = E[¢?(a;:)], \i = Ela?] and v; = E[¢?(a:)a?] — 1. More concisely, we
have

D = diag(Vec(H)) (17)
where
H = (P-i)‘j)nxn = diﬂg(ﬂ-l/\la sis)® :#n’\n) + diag(vla nE 2y Vn)
The proof of Theorem 2 is given in Appendix 1.
Let H = (hij)nxn. Since all y;, A;, and v; are positive, and so are all h;;. We define
1 1
E-' == (E)nxn-
Then from (17), we have
1
-1 _ 1 i
D™ = dlag(Vec(H)).

The results in Theorem 2 enable us to simplify the algorithm (16) to obtain a low

complexity learning rule. Since D! is a diagonal matrix, for any n x n matrix A
we have

D'Vec(A) = Vec(—;-r- o A) (18)









