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Abstract 

A new class of plug in classification techniques have recently been de­
veloped in the statistics and machine learning literature. A plug in clas­
sification technique (PaCT) is a method that takes a standard classifier 
(such as LDA or TREES) and plugs it into an algorithm to produce a 
new classifier. The standard classifier is known as the Plug in Classi­
fier (PiC). These methods often produce large improvements over using 
a single classifier. In this paper we investigate one of these methods and 
give some motivation for its success. 

1 Introduction 

Dietterich and Bakiri (1995) suggested the following method, motivated by Error Correct­
ing Coding Theory, for solving k class classification problems using binary classifiers. 

• Produce a k by B (B large) binary coding matrix, ie a matrix of zeros and ones. 
We will denote this matrix by Z, its i, jth component by Zij, its ith row by Zi and 
its j th column by zj. 

• Use the first column of the coding matrix (Zl) to create two super groups by 
assigning all groups with a one in the corresponding element of Zl to super group 
one and all other groups to super group zero. 

• Train your plug in classifier (PiC) on the new two class problem. 

• Repeat the process for each of the B columns (Zl, Z2, ... ,ZB) to produce B 
trained classifiers. 

• For a new test point apply each of the B classifiers to it. Each classifier will 
produce a 'Pi which is the estimated probability the test point comes from the 
jth super group one. This will produce a vector of probability estimates, f> = 
(PI , ih., . .. ,P B) T . 
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• To classify the point calculate Li = 2::=1 IPi - Zij I for each of the k groups (ie 
for i from 1 to k). This is the LI distance between p and Zi (the ith row of Z). 
Classify to the group with lowest L 1 distance or equivalently argi min Li 

We call this the ECOC PaCT. Each row in the coding matrix corresponds to a unique (non­
minimal) coding for the appropriate class. Dietterich's motivation was that this allowed 
errors in individual classifiers to be corrected so if a small number of classifiers gave a 
bad fit they did not unduly influence the final classification. Several PiC's have been tested. 
The best results were obtained by using tree's, so all the experiments in this paper are stated 
using a standard CART PiC. Note however, that the theorems are general to any Pic. 
In the past it has been assumed that the improvements shown by this method were at­
tributable to the error coding structure and much effort has been devoted to choosing an 
optimal coding matrix. In this paper we develop results which suggest that a randomized 
coding matrix should match (or exceed) the performance of a designed matrix. 

2 The Coding Matrix 

Empirical results (see Dietterich and Bakiri (1995» suggest that the ECOC PaCT can pro­
duce large improvements over a standard k class tree classifier. However, they do not shed 
any light on why this should be the case. To answer this question we need to explore its 
probability structure. The coding matrix, Z, is central to the PaCT. In the past the usual 
approach has been to choose one with as large a separation between rows (Zi) as possible 
(in terms of hamming distance) on the basis that this allows the largest number of errors 
to be corrected. In the next two sections we will examine the tradeoffs between a designed 
(deterministic) and a completely randomized matrix. 
Some of the results that follow will make use of the following assumption. 

k 

E[fji I Z,X] = LZiiqi = ZjT q j = 1, ... ,B (1) 
i=l 

where qi = P ( Gil X) is the posterior probability that the test observation is from group 
i given that our predictor variable is X. This is an unbiasedness assumption. It states that 
on average our classifier will estimate the probability of being in super group one correctly. 
The assumption is probably not too bad given that trees are considered to have low bias. 

2.1 Deterministic Coding Matrix 

Let Di = 1 - 2Ld B for i = 1 ... k. Notice that ar& min Li = argi max Di so using Di 
to classify is identical to the ECOC PaCT. Theorem 3 in section 2.2 explains why this is an 
intuitive transformation to use. 
Obviously no PaCT can outperform the Bayes Classifier. However we would hope that it 
would achieve the Bayes Error Rate when we use the Bayes Classifier as our PiC for each 
2 class problem. We have defined this property as Bayes Optimality. Bayes Optimality is 
essentially a consistency result It states, if our PiC converges to the Bayes Classifier, as 
the training sample size increases, then so will the PaCT. 

Definition 1 A PaCT is said to be Bayes Optimal if, for any test set, it always classifies to 
the bayes group when the Bayes Classifier is our PiC. 

For the ECOC PaCT this means that argi max qi = argi max D i , for all points in the 
predictor space, when we use the Bayes Classifier as our Pic. However it can be shown 
that in this case 

i = 1, ... ,k 
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It is not clear from this expression why there should be any guarantee that argi max Vi = 
argi max qi . In fact the following theorem tells us that only in very restricted circumstances 
will the ECOC PaCT be Bayes Optimal. 

Theorem 1 The Error Coding method is Bayes Optimal iff the Hamming distance between 
every pair of rows of the coding matrix is equal. 

The hamming distance between two binary vectors is the number of points where they 
differ. For general B and k there is no known way to generate a matrix with this property 
so the ECOC PaCT will not be Bayes Optimal. 

2.2 Random Coding Matrix 

We have seen in the previous section that there are potential problems with using a deter­
ministic matrix. Now suppose we randomly generate a coding matrix by choosing a zero 
or one with equal probability for every coordinate. Let Pi = E(I- 21ih - Zilll T) where 
T is the training set. Then Pi is the conditional expectation of D i and we can prove the 
following theorem. 

Theorem 2 For a random coding matrix, conditional on T, argi max Vi --+ argi max Pi 
a.s. as B --+ 00. Or in other words the classification from the ECOC PaCT approaches the 
classification from just using argi max Pi a.s. 

This leads to corollary 1 which indicates we have eliminated the main concern of a deter­
ministic matrix. 

Corollary 1 When the coding matrix is randomly chosen the ECOC PaCT is asymptoti­
cally Bayes Optimal ie argi max Di --+ argi max qi a.s. as B --+ 00 

This theorem is a consequence of the strong law. Theorems 2 and 3 provide motivation for 
the ECOC procedure. 

Theorem 3 Under assumption 1 for a randomly generated coding matrix 

E j) i = E Pi = qi i = 1 ... k 

This tells us that Vi is an unbiased estimate of the conditional probability so classifying to 
the maximum is in a sense an unbiased estimate of the Bayes classification. 
Now theorem 2 tells us that for large B the ECOC PaCT will be similar to classifying using 
argi max ILi only. However what we mean by large depends on the rate of convergence. 
Theorem 4 tells us that this rate is in fact exponential. 

Theorem 4 lfwe randomly choose Z then, conditional on T , for any fixed X 

Pr(argi max Vi i argi max ILi) ::; (k - 1) . e-mB 

for some constant m. 

Note that theorem 4 does not depend on assumption 1. This tells us that the error rate for 
the ECOC PaCT is equal to the error rate using argi max Pi plus a tenn which decreases 
exponentially in the limit. This result can be proved using Hoeffding's inequality (Hoeffd­
ing (1963». 
Of course this only gives an upper bound on the error rate and does not necessarily indicate 
the behavior for smaller values of B. Under certain conditions a Taylor expansion indicates 
that Pr(argi maxDi i argi maxPi) :::::: 0.5 - mVE for small values of mVE. So we 
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might expect that for smaller values of B the error rate decreases as some power of B but 
that as B increases the change looks more and more exponential. 
To test this hypothesis we calculated the error rates for 6 different values of B 
(15,26,40,70,100,200) on the LEITER data set (available from the Irvine Repository 
of machine learning). Each value of B contains 5 points corresponding to 5 random matri­
ces. Each point is the average over 20 random training sets. Figure 1 illustrates the results. 
Here we have two curves. The lower curve is the best fit of 1/ VB to the first four groups. 
It fits those groups well but under predicts errors for the last two groups. The upper curve 
is the best fit of 1/ B to the last four groups. It fits those groups well but over predicts errors 
for the first two groups. This supports our hypothesis that the error rate is moving through 
the powers of B towards an exponential fit. 
We can see from the figure that even for relatively low values of B the reduction in error 
rate has slowed substantially. This indicates that almost all the remaining errors are a result 
of the error rate of argi max J-li which we can not reduce by changing the coding matrix. 
The coding matrix can be viewed as a method for sampling from the distribution of 
1- 21pj - Zij I. If we sample randomly we will estimate J-li (its mean). It is well known that 
the optimal way to estimate such a parameter is by random sampling so it is not possible to 
improve on this by designing the coding matrix. Of course it may be possible to improve 
on argi max J-li by using the training data to influence the sampling procedure and hence 
estimating a different quantity. However a designed coding matrix does not use the training 
data. It should not be possible to improve on random sampling by using such a procedure 
(as has been attempted in the past). 

3 Why does the ECOC PaCT work? 

The easiest way to motivate why the ECOC PaCT works, in the case of tree classifiers, is 
to consider a very similar method which we call the Substitution PaCT. We will show that 
under certain conditions the ECOC PaC!' is very similar to the Substitution PaCT and then 
motivate the success of the later. 
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3.1 Substitution PaCT 

The Substitution PaCT uses a coding matrix to fonn many different trees just as the ECOC 
PaCT does. However, instead of using the transformed training data to fonn a probability 
estimate for each two class problem, we now plug the original (ie k-class) training data back 
into the new tree. We use this training data to fonn probability estimates and classifications 
just as we would with a regular tree. The only difference is in how the tree is fonned. 
Therefore, unlike the ECOC PaCT, each tree will produce a probability estimate for each 
of the k classes. For each class we simply average the probability estimate for that class 
over our B trees. So if pf is the probability estimate for the Substitution PaCT, then 

1 B 

pf = B LPij 
j=l 

(2) 

where Pij is the probability estimate for the ith group for the tree fonned from the jth 
column of the coding matrix. 
Theorem 5 shows that under certain conditions the ECOC PaCT can be thought of as an 
approximation to the Substitution PaCT. 

Theorem 5 Suppose that Pij is independentfrom the jth column of the coding matrix, for 
all i and j. Then as B approaches infinity the ECOC PaCT and Substitution PaCT will 
converge ie they will give identical classification rules. 

The theorem depends on an unrealistic assumption. However, empirically it is well known 
that trees are unstable and a small change in the data set can cause a large change in the 
structure of the tree so it may be reasonable to suppose that there is a low correlation. 
To test this empirically we ran the ECOC and Substitution PaCT's on a simulated data 
set. The data set was composed of 26 classes. Each class was distributed as a bivariate 
normal with identity covariance matrix and uniformly distributed means. The training data 
consisted of 10 observations from each group. Figure 2 shows a plot of the estimated 
probabilities for each of the 26 classes and 1040 test data points averaged over 10 training 
data sets. Only points where the true posterior probability is greater than 0.01 have been 
plotted since groups with insignificant probabilities are unlikely to affect the classification. 
If the two groups were producing identical estimates we would expect the data points to 
lie on the dotted 45 degree.line. Clearly this is not the case. The Substitution PaCT is 
systematically shrinking the probability estimates. However there is a very clear linear 
relationship (R2 :::::: 95%) and since we are only interested in the arg max for each test 
point we might expect similar classifications. In fact this is the. case with fewer than 4% of 
points correctly classified by one group but not the other. 

3.2 Why does the Substitution PaCT work? 

The fact that pf is an average of probability estimates suggests that a reduction in vari­
ability may be an explanation for the success of the Substitution PaCT. Unfortunately it 
has been well shown (see for example Friedman (1996» that a reduction in variance of 
the probability estimates does not necessarily correspond to a reduction in the error rate. 
However theorem 6 provides simplifying assumptions under which a relationship between 
the two quantities exists. 

Theorem 6 Suppose that 

pT 
and pf 

(a[ > 0) 

(af > 0) 

(3) 

(4) 
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Figure 2: Probability estimates from both the ECOC and Substitution PaCT's 

where eS and eT have identical joint distributions with variance 1. pT is the probability 
estimate of the ith group for a k class tree method, ao and al are constants and qi is the 
true posterior probability. Let 

Var(p'!'jaT ) 'V _ ~ 1 
,- S 

V ar(pil / a 1 ) 

and p = corr(pil ,Pi2) (assumed constantfor all i). Then 

Pr(argmaxP7 = argmaxqi) ~ Pr(argmaxp; = argmaxqi) (5) 

if 

and 
I-p 

B>-­
- 'Y - P 

(6) 

(7) 

The theorem states that under fairly general conditions, the probability that the Substitution 
PaCT gives the same classification as the Bayes classifier is at least as great as that for the 
tree method provided that the standardized variability is low enough. It should be noted 
that only in the case of two groups is there a direct correspondence between the error rate 
and 5. The inequality in 5 is strict for most common distributions (e.g. normal, uniform, 
exponential and gamma) of e. 
Now there is reason to believe that in general p will be small. This is a result of the 
empirical variability of tree classifiers. A small change in the training set can cause a large 
change in the structure of the tree and also the final probability estimates. So by changing 
the super group coding we might expect a probability estimate that is fairly unrelated to 
previous estimates and hence a low correlation. 
To test the accuracy of this theory we examined the results from the simulation performed in 
section 3.1. We wished to estimate 'Y and p. The following table summarizes our estimates 
for the variance and standardizing (al) terms from the simulated data set. 

I Classifier 
Substitution PaCT 
Tree Method 
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Figure 3: Error rates on the simulated data set for tree method, Substitution PaCf and 
ECOC PaCT plotted against B (on log scale) 

These quantities give us an estimate for, of l' = 0.227 We also derived an estimate for p 
of p = 0.125 
We see that p is less than, so provided B ~ ~=~ ~ 8.6 we should see an improvement 
in the Substitution PaCT over a k class tree classifier. Figure 3 shows that the Substitution 
error rate drops below that of the tree classifier at almost exactly this point. 

4 Conclusion 

The ECOC PaCT was originally envisioned as an adaption of error coding ideas to clas­
sification problems. Our results indicate that the error coding matrix is simply a method 
for randomly sampling from a fixed distribution. This idea is very similar to the Boot­
strap where we randomly sample from the empirical distribution for a fixed data set. There 
you are trying to estimate the variability of some parameter. Your estimate will have two 
sources of error, randomness caused by sampling from the empirical distribution and the 
randomness from the data set itself. In our case we have the same two sources of error, 
error caused by sampling from 1 - 2!ftj - Zij! to estimate J-ti and error's caused by J-t itself. 
In both cases the first sort of error will reduce rapidly and it is the second type we are really 
interested in. It is possible to motivate the reduction in error rate of using argi max J-ti in 
terms of a decrease in variability, provided B is large enough and our correlation (p) is 
small enough. 
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