
Hippocampal Model of Rat Spatial Abilities 
Using Temporal Difference Learning 

David J Foster* 
Centre for Neuroscience 
Edinburgh University 

Richard GM Morris 
Centre for Neuroscience 

Edinburgh University 

Abstract 

Peter Dayan 
E25-210, MIT 

Cambridge, MA 02139 

We provide a model of the standard watermaze task, and of a more 
challenging task involving novel platform locations, in which rats 
exhibit one-trial learning after a few days of training. The model 
uses hippocampal place cells to support reinforcement learning, 
and also, in an integrated manner, to build and use allocentric 
coordinates. 

1 INTRODUCTION 

Whilst it has long been known both that the hippocampus of the rat is needed for 
normal performance on spatial tasksl3 , 11 and that certain cells in the hippocampus 
exhibit place-related firing,12 it has not been clear how place cells are actually used 
for navigation. One of the principal conceptual problems has been understanding 
how the hippocampus could specify or learn paths to goals when spatially tuned 
cells in the hippocampus respond only on the basis of the rat's current location. 
This work uses recent ideas from reinforcement learning to solve this problem in 
the context of two rodent spatial learning results. 

Reference memory in the watermazell (RMW) has been a key task demonstrating 
the importance of the hippocampus for spatial learning. On each trial, the rat is 
placed in a circular pool of cloudy water, the only escape from which is a platform 
which is hidden (below the water surface) but which remains in a constant position. 
A random choice of starting pOSition is used for each trial. Rats take asymptotically 
short paths after approximately 10 trials (see figure 1 a). Delayed match-to-place 
(DMP) learning is a refined version in which the platform'S location is changed on 
each day. Figure 1 b shows escape latencies for rats given four trials per day for nine 
days, with the platform in a novel position on each day. On early days, acquisition 
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Figure 1: a) Latencies for rats on the reference memory in the watermaze (RMW) 
task (N=8). b) Latencies for rats on the Delayed Match-to-Place (DMP) task (N=62). 

is gradual but on later days, rats show one-trial learning, that is, near asymptotic 
performance on the second trial to a novel platform position. 

The RMW task has been extensively modelled. 6,4,5,20 By contrast, the DMP task 
is new and computationally more challenging. It is solved here by integrating a 
standard actor-critic reinforcement learning system2,7 which guarantees that the 
rat will be competent to perform well in arbitrary mazes, with a system that learns 
spatial coordinates in the maze. Temporal difference learning 1 7 (TO) is used for actor, 
critic and coordinate learning. TO learning is attractive because of its generality for 
arbitrary Markov decision problems and the fact that reward systems in vertebrates 
appear to instantiate it. 14 

2 THEMODEL 

The model comprises two distinct networks (figure 2): the actor-critic network and 
a coordinate learning network. The contribution of the hippocampus, for both 
networks, is to provide a state-space representation in the form of place cell basis 
functions. Note that only the activities of place cells are required, by contrast with 
decoding schemes which require detailed information about each place cell.4 

ACTOR-CRITIC 
SYSTEM 

COORDINATE SYSTEM 

r-------------1 Remembered 1 
Goal coordinates 1 

1 
VECTOR COMPUTA nONI 

~ 

Coordinate 
Representation 1 

1 ______ -------1 

Figure 2: Model diagram showing the interaction between actor-critic and coordi­
nate system components. 
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2.1 Actor-Critic Learning 

Place cells are modelled as being tuned to location. At position p, place cell 
i has an output given by h(p) = exp{ -lip - sdI2/2(12}, where Si is the place 
field centre, and (1 = 0.1 for all place fields. The critic learns a value function 
V(p) = L:i wih(p) which comes to represent the distance of p from the goal, using 
the TO rule 6.w~ ex: 8t h(pt), where 

(1) 

is the TD error, pt is position at time t, and the reward r(pt, pt+I) is 1 for any 
move onto the platform, and 0 otherwise. In a slight alteration of the original rule, 
the value V (p) is set to zero when p is at the goal, thus ensuring that the total 
future rewards for moving onto the goal will be exactly 1. Such a modification 
improves stability in the case of TD learning with overlapping basis functions. 
The discount factor, I' was set to 0.99. Simultaneously the rat refines a policy, 
which is represented by eight action cells. Each action cell (aj in figure 2) receives 
a parameterised input at any position p: aj (p) = L:i qjdi (p). An action is chosen 
stochastically with probabilities given by P(aj) = exp{2aj}/ L:k exp{2ak}. Action 
weights are reinforced according to:2 

(2) 

where 9j((Jt) is a gaussian function of the difference between the head direction 
(Jt at time t and the preferred direction of the jth action cell. Figure 3 shows the 
development of a policy over a few trials. 

V(p)l Triall V(p) 1 TrialS V(P)l Triall3 
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Figure 3: The RMW task: the value function gradually disseminates information 
about reward proximity to all regions of the environment. Policies and paths are 
also shown. 

There is no analytical guarantee for the convergence of TD learning with policy 
adaptation. However our simulations show that the algorithm always converges 
for the RMW task. In a simulated arena of diameter 1m and with swimming speeds 
of 20cm/s, the simulation matched the performance of the real rats very closely (see 
figure S). This demonstrates that TD-based reinforcement learning is adequately 
fast to account for the learning performance of real animals. 
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2.2 Coordinate Learning 

Although the learning of a value function and policy is appropriate for finding 
a fixed platform, the actor-critic model does not allow the transfer of knowledge 
from the task defined by one goal position to that defined by any other; thus it 
could not generate the sort of one-trial learning that is shown by rats on the DMP 
task (see figure 1 b). This requires acquisition of some goal-independent know ledge 
about s~ace. A natural mechanism for this is the path integration or self-motion 
system. 0,10 However, path integration presents two problems. First, since the rat 
is put into the maze in a different position for each trial, how can it learn consistent 
coordinates across the whole maze? Second, how can a general, powerful, but slow, 
behavioral learning mechanism such as TO be integrated with a specific, limited, 
but fast learning mechanism involving spatial coordinates? 

Since TO critic learning is based on enforcing consistency in estimates of future 
reward, we can also use it to learn spatially consistent coordinates on the basis 
of samples of self-motion. It is assumed that the rat has an allocentric frame of 
reference.1s The model learns parameterised estimates of the x and y coordinates 
of all positions p: x(p) = Li w[ fi(P) and y(p) = Li wY h(p), Importantly, while 
place cells were again critical in supporting spatial representation, they do not embody 
a map of space. The coordinate functions, like the value function previously, have to 
be learned. 

As the simulated rat moves around, the coordinate weights {w[} are adjusted 
according to: t 

Llwi ()( (Llxt + X (pt+l ) - X(pt)) L At - k h(pk) (3) 
k=1 

where Llxt is the self-motion estimate in the x direction. A similar update is applied 
to {wn. In this case, the full TO(A) algorithm was used (with A = 0.9); however 
TD(O) could also have been used, taking slightly longer. Figure 4a shows the x and 
y coordinates at early and late phases of learning. It is apparent that they rapidly 
become quite accurate - this is an extremely easy task in an open field maze. 

An important issue in the learning of coordinates is drift, since the coordinate 
system receives no direct information about the location of the origin. It turns out 
that the three controlling factors over the implicit origin are: the boundary of the 
arena, the prior setting of the coordinate weights (in this case all were zero) and 
the position and prior value of any absorbing area (in this case the platform). If the 
coordinate system as a whole were to drift once coordinates have been established, 
this would invalidate coordinates that have been remembered by the rat over long 
periods. However, since the expected value of the prediction error at time steps 
should be zero for any self-consistent coordinate mapping, such a mapping should 
remain stable. This is demonstrated for a single run: figure 4b shows the mean 
value of coordinates x evolving over trials, with little drift after the first few trials. 

We modeled the coordinate system as influencing the choice of swimming direction 
in the manner of an abstract action. I5 The (internally specified) coordinates of the 
most recent goal position are stored in short term memory and used, along with the 
current coordinates, to calculate a vector heading. This vector heading is thrown 
into the stochastic competition with the other possible actions, governed by a 
single weight which changes in a similar manner to the other action weights (as in 
equation 2, see also fig 4d), depending on the TO error, and on the angular proximity 
of the current head direction to the coordinate direction. Thus, whether the the 
coordinate-based direction is likely to be used depends upon its past performance. 

One simplification in the model is the treatment of extinction. In the DMP task, 
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Figure 4: The evolution of the coordinate system for a typical simulation run: a.) 
coordinate outputs at early and late phases of learning, b.) the extent of drift in the 
coordinates, as shown by the mean coordinate value for a single run, c.) a measure 

f d· A2 ~ ~ {Xr (Pr.)-Xr -X(pr.)}2 
o coor mate error for the same run (7E = r r. (Np-l)Nr ' where k 
indexes measurement points (max Np ) and r indexes runs (max Nr), Xr(Pk) is the 
model estimate of X at position Pk, X(Pk) is the ideal estimate for a coordinate 
system centred on zero, and Xr is the mean value over all the model coordinates, 
d.) the increase during training of the probability of choosing the abstract action. 
This demonstrates the integration of the coordinates into the control system. 

real rats extinguish to a platform that has moved fairly quickly whereas the actor­
critic model extinguishes far more slowly. To get around this, when a simulated 
rat reaches a goal that has just been moved, the value and action weights are 
reinitialised, but the coordinate weights wf and wf, and the weights for the abstract 
action, are not. 

3 RESULTS 

The main results of this paper are the replication by simulation of rat performance 
on the RMW and DMP tasks. Figures la and b show the course of learning for 
the rats; figures Sa and b for the model. For the DMP task, one-shot acquisition is 
apparent by the end of training. 

4 DISCUSSION 

We have built a model for one-trial spatial learning in the watermaze which uses 
a single TD learning algorithm in two separate systems. One system is based on a 
reinforcement learning that can solve general Markovian decision problems, and 
the other is based on coordinate learning and is specialised for an open-field water 
maze. Place cells in the hippocampus offer an excellent substrate for learning the 
actor, the critic and the coordinates. 

The model is explicit about the relationship between the general and specific learn­
ing systems, and the learning behavior shows that they integrate seamlessly. As 
currently constituted, the coordinate system would fail if there were a barrier in 
the maze. We plan to extend the model to allow the coordinate system to specify 
abstract targets other than the most recent platform position - this could allow 
it fast navigation around a larger class of environments. It is also important to 
improve the model of learning 'set' behavior - the information about the nature of 
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Figure 5: a.) Performance of the actor-critic model on the RMW task, and b.) 
performance of the full model on the DMP task. The data for comparison is shown 
in figures la and b. 

the DMP task that the rats acquire over the course of the first few days of training. 
Interestingly, learning set is incomplete - on the first trial of each day, the rats 
still aim for the platform position on the previous day, even though this is never 
correct.16 The significant differences in the path lengths on the first trial of each 
day (evidence in figure Ib and figure 5b) come from the relative placements of the 
platforms. However, the model did not use the same positions as the empirical 
data, and, in any case, the model of exploration behavior is rather simplistic. 

The model demonstrates that reinforcement learning methods are perfectly fast 
enough to match empirical learning curves. This is fortunate, since, unlike most 
models specifically designed for open-field navigation,6,4,5,2o RL methods can 
provably cope with substantially more complicated tasks with arbitrary barriers, 
etc, since they solve the temporal credit assignment problem in its full generality. 
The model also addresses the problem that coordinates in different parts of the 
same environment need to be mutually consistent, even if the animal only expe­
riences some parts on separate trials. An important property of the model is that 
there is no requirement for the animal to have any explicit knowledge of the rela­
tionship between different place cells or place field position, size or shape. Such a 
requirement is imposed in various models.9,4,6,2o 

Experiments that are suggested by this model (as well as by certain others) con­
cern the relationship between hippocampally dependent and independent spatial 
learning. First, once the coordinate system has been acquired, we predict that 
merely placing the rat at a new location would be enough to let it find the platform 
in one shot, though it might be necessary to reinforce the placement e.g. by first 
placing the rat in a bucket of cold water. Second, we know that the establishment 
of place fields in an environment happens substantiallr faster than establishment 
of one-shot or even ordinary learning to a platform.2 We predict that blocking 
plasticity in the hippocampus following the establishment of place cells (possibly 
achieved without a platform) would not block learning of a platform. In fact, new 
experiments show that after extensive pre-training, rats can perform one-trial learn­
ing in the same environment to new platform positions on the DMP task without 
hippocampal synaptic plasticity. 16 This is in contrast to the effects of hippocampal 
lesion, which completely disrupts performance. According to the model, coor­
dinates will have been learned during pre-training. The full prediction remains 
untested: that once place fields have been established, coordinates could be learned 
in the absence of hippocampal synaptic plasticity. A third prediction follows from 
evidence that rats with restricted hippocampal lesions can learn the fixed platform 
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task, but much more slowly, based on a gradual "shaping" procedure.22 In our 
model, they may also be able to learn coordinates. However, a lengthy training 
procedure could be required, and testing might be complicated if expressing the 
knowledge required the use of hippocampus dependent short-term memory for 
the last platform location. I6 

One way of expressing the contribution of the hippocampus in the model is to say 
that its function is to provide a behavioural state space for the solution of complex 
tasks. Hence the contribution of the hippocampus to navigation is to provide 
place cells whose firing properties remain consistent in a given environment. It 
follows that in different behavioural situations, hippocampal cells should provide 
a representation based on something other than locations - and, indeed, there 
is evidence for this.8 With regard to the role of the hippocampus in spatial tasks, 
the model demonstrates that the hippocampus may be fundamentally necessary 
without embodying a map. 
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Abstract 

In integrated service communication networks, an important problem is 
to exercise call admission control and routing so as to optimally use the 
network resources. This problem is naturally formulated as a dynamic 
programming problem, which, however, is too complex to be solved ex­
actly. We use methods of reinforcement learning (RL), together with a 
decomposition approach, to find call admission control and routing poli­
cies. The performance of our policy for a network with approximately 
1045 different feature configurations is compared with a commonly used 
heuristic policy. 

1 Introduction 

The call admission control and routing problem arises in the context where a telecommu­
nication provider wants to sell its network resources to customers in order to maximize 
long term revenue. Customers are divided into different classes, called service types. Each 
service type is characterized by its bandwidth demand, its average call holding time and 
the immediate reward the network provider obtains, whenever a call of that service type is 

• Author to whom correspondence should be addressed. 
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accepted. The control actions for maximizing the long term revenue are to accept or reject 
new calls (Call Admission Control) and, if a call is accepted, to route the call appropri­
ately through the network (Routing). The problem is naturally formulated as a dynamic 
programming problem, which, however, is too complex to be solved exactly. We use the 
methodology of reinforcement learning (RL) to approximate the value function of dynamic 
programming. Furthermore, we pursue a decomposition approach, where the network is 
viewed as consisting of link processes, each having its own value function. This has the 
advantage, that it allows a decentralized implementation of the training methods of RL 
and a decentralized implementation of the call admission control and routing policies. Our 
method learns call admission control and routing policies which outperform the commonly 
used heuristic "Open-Shortest-Path-First" (OSPF) policy. 

In some earlier related work, we applied RL to the call admission problem for a single 
communication link in an integrated service environment. We found that in this case, RL 
methods performed as well, but no better than, well-designed heuristics. Compared with 
the single link problem, the addition of routing decisions makes the network problem more 
complex and good heuristics are not easy to derive. 

2 Call Admission Control and Routing 

We are given a telecommunication network consisting of a set of nodes N = {I, ... , N} and 
a set of Iinks .c = {I, ... , L}, where link I has a a total capacity of B(l) units of bandwidth. 
We support a set M = {I, "', M} of different service types, where a service type m is 
characterized by its bandwidth demand b(m), its average call holding time I/v(m) (here 
we assume that the call holding times are exponentially distributed) and the immediate 
reward c( m) we obtain, whenever we accept a call of that service type. A link can carry 
simultaneously any combination of calls, as long as the bandwidth used by these calls does 
not exceed the total bandwidth of the link (Capacity Constraint). When a new call of 
service type m requests a connection between a node i and a node j, we can either reject 
or accept that request (Call Admission Control). If we accept the call, we choose a route 
out of a list of predefined routes (Routing). The call then uses b(m) units of bandwidth 
on each link along that route for the duration of the call. We can, therefore, only choose 
a route, which does not violate the capacity constraints of its links, if the call is accepted. 
Furthermore, if we accept the call, we obtain an immediate reward c( m). The objective 
is to exercise call admission control and routing in such a way that the long term revenue 
obtained by accepting calls is maximized. 

We can formulate the call admission control and routing problem using dynamic program­
ming (e. g. Bertsekas, 1995). Events w which incur state transitions, are arrivals of new 
calls and call terminations. The state Xt at time t consists of a list for each route, indicating 
how many calls of each service type are currently using that route. The decision/control Ut 

applied at the time t of an arrival of a new call is to decide, whether to reject or accept the 
call, and, if the call is accepted, how to route it through the network. The objective is to 
learn a policy that assigns decisions to each state so as to 

where E{·} is the expectation operator, tk is the time when the kth event happens, 
g( Xtk' Wk, Ut,,) is the immediate reward associated with the kth event, and f3 is a discount 
factor that makes immediate rewards more valuable than future ones. 
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3 Reinforcement Learning Solution 

RL methods solve optimal control (or dynamic programming) problems by learning good 
approximations to the optimal value function r, given by the solution to the Bellman op­
timality equation which takes the following form for the caB admission control and routing 
problem 

J*(x) = Er {e- th } Ew { max [g(x,w, u) + J*(X I )]} 
ueU(x) 

where U ( x) is the set of control actions available in the current state x, T is the time when 
the first event w occurs and x' is the successor state. Note that x' is a deterministic function 
of the current state x, the control u and the event w. 

RL uses a compact representation j (', 0) to learn and store an estimate of J" (.). On each 
event, i(., 0) is both used to make decisions and to update the parameter vector e. In the 
caB admission control and routing problem, one has only to choose a control action when 
a new call requests a connection. In such a case, J (,,0) is used to choose a control action 
according to the formula 

u=arg max [g(x,w,u) + J(X', e)] 
ueU(x) 

(1) 

This can be expressed in words as follows. 

Decision Making: When a new call requests a connection, use J (', e) to evaluate, for each 
permissible route, the successor state x' we transit to, when we choose that route, and pick 
a route which maximizes that value. If the sum of the immediate reward and the value 
associated with this route is higher than the value of the current state, route the call over 
that route; otherwise reject the call. 

Usually, RL uses a global feature extractor f(x) to form an approximate compact rep­
resentation of the state of the system, which forms the input to a function approximator 
i(., e). Sutton's temporal difference (TO()'» algorithms (Sutton, 1988) can then be used 
to train i(., 0) to learn an estimate of J*. Using ID(O), the update at the kth event takes 
the following form 

where 

dk e-/J(t/c-t/c-d (g(Xt/c, Wk, Ut/c) + J(!(Xt/c), ek-I)) 

-J(I(Xt/C_l)' Ok-I) 

and where 'Yk is a small step size parameter and Utk is the control action chosen according 
to the decision making rule described above. 

Here we pursue an approach where we view the network as being composed of link pro­
cesses. Furthermore, we decompose immediate rewards g( Xtk' Wk, Ut/c) associated with the 
kth event, into link rewards g(l) (Xt/c, Wk, Ut/c) such that 

L 

g(Xtk' Wk. Ut/c) = L gil) (Xtl:' Wk, UtI:) 

1=1 

We then define, for each link I, a value function J(I) (I(l) (x), e( I»), which is interpreted as 
an estimate of the discounted long term revenue associated with that link. Here, f(l) defines 
a local feature, which forms the input to the value function associated with link I. To obtain 
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an approximation of J* (x), the functions ](1) (J(l) (x), 0(1)) are combined as follows 

L L ](1) (J(I) (x), (J(l)). 

1=1 

925 

At each event, we update the parameter vector (J(l) of link 1, only if the event is associated 
with the link. Events associated with a link 1 are arrivals of new calls which are potentially 
routed over link 1 and termination of calls which were routed over the link I. The update 
rule of the parameter vector 0(1) is very similar to the TD(O) algorithm described above 

(J(l) - (J(l) + "V(I)d(I)V ()](l) (/(1) (x ) (J(l) ) 
k - k-l Ik k 9 I tk_1 , k-l (2) 

where 

e - i3(t~') -t~/~ I) (g(l) (x t(l), Wkl ) , Ut(l)) + ](l) (J(l) (xt(l»), (Jkl~ 1)) 
k k k 

(3) 

_](1) (J(l) (x t (/) ), (Jkl~l) 
k-I 

and where Ill) is a small step size parameter and tr) is the time when the kth event will 
associated with link 1 occurs. Whenever a new call of a service of type m is routed over 
a route r which contains the link i, the immediate reward g(l) associated with the link i is 
equal to c( m) / #r, where #r is the number of links along the route r. For all other events, 
the immediate reward associated with link 1 is equal to O. 

The advantage of this decomposition approach is that it allows decentralized training and 
decentralized decision making. Furthermore, we observed that this decomposition ap­
proach leads to much shorter training times for obtaining an approximation for J* than the 
approach without decomposition. All these features become very important if one consid­
ers applying methods of RL to large integrated service networks supporting a fair number 
of different service types. 

We use exploration to obtain the states at which we update the parameter vector O. At each 
state, with probability p == 0.5, we apply a random action, instead of the action recom­
mended by the current value function, to generate the next state in our training trajectory. 
However, the action Ut(I), that is used in the update rule (3), is still the one chosen ac-

k 

cording to the rule given in (1). Exploration during the training significantly improved the 
performance of the policy. 

Table I: Service Types. 

SERVICE TYPE m 1 2 3 

BANDWIDTH DEMAND b( m) 1 3 5 
AVERAGE HOLDING TIME l/v(m) 10 10 2 
IMMEDIATE REWARD c( m) 1 2 50 

4 Experimental Results 

In this section, we present experimental results obtained for the case of an integrated service 
network consisting of 4 nodes and 12 unidirectional links. There are two different classes 
of links with a total capacity of 60 and 120 units of bandwidth, respectively (indicated by 
thick and thin arrows in Figure 1). We assume a set M == {I, 2, 3} of three different ser­
vice types. The corresponding bandwidth demands, average holding times and immediate 
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Figure 1: Telecommunication Network Consisting of 4 Nodes and 12 Unidirectional Links. 

PERFORMANCE DURING LEAANING 

Figure 2: Average Reward per TIme Unit During the Whole Training Phase of 107 Steps 
(Solid) and During Shorter Time Windows of 105 Steps (Dashed). 

rewards are given in Table 1. Call arrivals are modeled as independent Poisson processes, 
with a separate mean for each pair of source and destination nodes and each service type. 
Furthermore, for each source and destination node pair, the list of possible routes consists 
of three entries: the direct path and the two alternative 2-hop-routes. 

We compare the policy obtained through RL with the commonly used heuristic OSPF 
(Open Shortest Path First). For every pair of source and destination nodes, OSPF orders 
the list of predefined routes. When a new call arrives, it is routed along the first route in the 
corresponding list, that does not violate the capacity constraint; if no such a route exists, 
the call is rejected. We use the average reward per unit time as performance measure to 
compare the two policies. 

For the RL approach, we use a quadratic approximator, which is linear with respect to the 
parameters ()(I), as a compact representation of ](1). Other approximation architectures 
were tried, but we found that the quadratic gave the best results with respect to both the 
speed of convergence and the final performance. As inputs to the compact representation 
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Figure 3: Comparison of the Average Rewards and Rejection Rates of the RL and OSPF 
Policies. 

o 10 

o 10 

ROUTING (OSPF) 

direct link ----~~------.0:-= alternative route no. 1 
alternative route no. 2 .. 
20 30 ~ 50 ~ ro ~ 

percentage of calls routed on direct and alternative paths 

direct link 
alternative route no. 1 
alternative route no. 2 

ROUTING (RL) 

20 30 40 50 60 70 80 
percentage of calls routed on direct and alternative paths 

90 

90 

100 

100 

Figure 4: Comparison of the Routing Behaviour of the RL and OSPF Policies. 

](/), we use a set of local features, which we chose to be the number of ongoing calls 
of each service type on link l. For the 4-node network, there are approximately 1.6. 1045 

different feature configurations. Note that the total number of possible states is even higher. 

The results of the case studies are given in in Figure 2 (Training Phase), Figure 3 (Perfor­
mance) and Figure 4 (Routing Behaviour). We give here a summary of the results. 

Training Phase: Figure 2 shows the average reward of the RL policy as a function of 
the training steps. Although the average reward increases during the training, it does not 
exceed 141, the average reward of the heuristic OSPF. This is due to the high amount of 
exploration in the training phase. 

Performance Comparison: The policy obtained through RL gives an average reward of 
212, which as about 50% higher than the one of 141 achieved by OSPF. Furthermore, the 
RL policy reduces the number of rejected calls for all service types. The most significant 
reduction is achieved for calls of service type 3, the service type, which has the highest 
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immediate reward. Figure 3 also shows that the average reward of the RL policy is close 
to the potential average reward of 242, which is the average reward we would obtain if 
all calls were accepted. This leaves us to believe that the RL policy is close to optimal. 
Figure 4 compares the routing behaviour of the RL control policy and OSPF. While OSPF 
routes about 15% - 20% of all calls along one of the alternative 2-hop-routes, the RL 
policy almost uses alternative routes for calls of type 3 (about 25%) and routes calls of the 
other two service types almost exclusively over the direct route. This indicates, that the RL 
policy uses a routing scheme, which avoids 2-hop-routes for calls of service type 1 and 2, 
and which allows us to use network resources more efficiently. 

5 Conclusion 

The call admission control and routing problem for integrated service networks is natu­
rally formulated as a dynamic programming problem, albeit one with a very large state 
space. Traditional dynamic programming methods are computationally infeasible for such 
large scale problems. We use reinforcement learning, based on Sutton's (1988) T D(O), 
combined with a decomposition approach, which views the network as consisting of link 
processes. This decomposition has the advantage that it allows decentralized decision mak­
ing and decentralized training, which reduces significantly the time of the training phase. 
We presented a solution for an example network with about 1045 different feature config­
urations. Our RL policy clearly outperforms the commonly used heuristic OSPF. Besides 
the game of backgammon (Tesauro, 1992), the elevator scheduling (Crites & Barto, 1996), 
the jop-shop scheduling (Zhang & Dietterich, 1996) and the dynamic channel allocation 
(Singh & Bertsekas, 1997), this is another successful application of RL to a large-scale 
dynamic programming problem for which a good heuristic is hard to find. 
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