
Hippocampal Model of Rat Spatial Abilities
Using Temporal Difference Learning

David J Foster*
Centre for Neuroscience
Edinburgh University

Richard GM Morris
Centre for Neuroscience

Edinburgh University

Abstract

Peter Dayan
E25-210, MIT

Cambridge, MA 02139

We provide a model of the standard watermaze task, and of a more
challenging task involving novel platform locations, in which rats
exhibit one-trial learning after a few days of training. The model
uses hippocampal place cells to support reinforcement learning,
and also, in an integrated manner, to build and use allocentric
coordinates.

1 INTRODUCTION

Whilst it has long been known both that the hippocampus of the rat is needed for
normal performance on spatial tasksl3 , 11 and that certain cells in the hippocampus
exhibit place-related firing,12 it has not been clear how place cells are actually used
for navigation. One of the principal conceptual problems has been understanding
how the hippocampus could specify or learn paths to goals when spatially tuned
cells in the hippocampus respond only on the basis of the rat's current location.
This work uses recent ideas from reinforcement learning to solve this problem in
the context of two rodent spatial learning results.

Reference memory in the watermazell (RMW) has been a key task demonstrating
the importance of the hippocampus for spatial learning. On each trial, the rat is
placed in a circular pool of cloudy water, the only escape from which is a platform
which is hidden (below the water surface) but which remains in a constant position.
A random choice of starting pOSition is used for each trial. Rats take asymptotically
short paths after approximately 10 trials (see figure 1 a). Delayed match-to-place
(DMP) learning is a refined version in which the platform'S location is changed on
each day. Figure 1 b shows escape latencies for rats given four trials per day for nine
days, with the platform in a novel position on each day. On early days, acquisition

·Crichton Street, Edinburgh EH8 9LE, United Kingdom. Funded by Edin. Univ.
Holdsworth Scholarship, the McDonnell-Pew foundation and NSF grant IBN-9634339.
Email: djf@cfn.ed.ac.uk

146 D. J Foster; R. G. M. Mo"is and P. Dayan

100 100

90

b
90

80 a
_ 70

'" i oo

'" 50 -'

~40
~30

20

10

13 17 21 2S

Figure 1: a) Latencies for rats on the reference memory in the watermaze (RMW)
task (N=8). b) Latencies for rats on the Delayed Match-to-Place (DMP) task (N=62).

is gradual but on later days, rats show one-trial learning, that is, near asymptotic
performance on the second trial to a novel platform position.

The RMW task has been extensively modelled. 6,4,5,20 By contrast, the DMP task
is new and computationally more challenging. It is solved here by integrating a
standard actor-critic reinforcement learning system2,7 which guarantees that the
rat will be competent to perform well in arbitrary mazes, with a system that learns
spatial coordinates in the maze. Temporal difference learning 1 7 (TO) is used for actor,
critic and coordinate learning. TO learning is attractive because of its generality for
arbitrary Markov decision problems and the fact that reward systems in vertebrates
appear to instantiate it. 14

2 THEMODEL

The model comprises two distinct networks (figure 2): the actor-critic network and
a coordinate learning network. The contribution of the hippocampus, for both
networks, is to provide a state-space representation in the form of place cell basis
functions. Note that only the activities of place cells are required, by contrast with
decoding schemes which require detailed information about each place cell.4

ACTOR-CRITIC
SYSTEM

COORDINATE SYSTEM

r-------------1 Remembered 1
Goal coordinates 1

1
VECTOR COMPUTA nONI

~

Coordinate
Representation 1

1 ______ -------1

Figure 2: Model diagram showing the interaction between actor-critic and coordi­
nate system components.

Hippocampal Model of Rat Spatial Abilities Using TD Learning 147

2.1 Actor-Critic Learning

Place cells are modelled as being tuned to location. At position p, place cell
i has an output given by h(p) = exp{ -lip - sdI2/2(12}, where Si is the place
field centre, and (1 = 0.1 for all place fields. The critic learns a value function
V(p) = L:i wih(p) which comes to represent the distance of p from the goal, using
the TO rule 6.w~ ex: 8t h(pt), where

(1)

is the TD error, pt is position at time t, and the reward r(pt, pt+I) is 1 for any
move onto the platform, and 0 otherwise. In a slight alteration of the original rule,
the value V (p) is set to zero when p is at the goal, thus ensuring that the total
future rewards for moving onto the goal will be exactly 1. Such a modification
improves stability in the case of TD learning with overlapping basis functions.
The discount factor, I' was set to 0.99. Simultaneously the rat refines a policy,
which is represented by eight action cells. Each action cell (aj in figure 2) receives
a parameterised input at any position p: aj (p) = L:i qjdi (p). An action is chosen
stochastically with probabilities given by P(aj) = exp{2aj}/ L:k exp{2ak}. Action
weights are reinforced according to:2

(2)

where 9j((Jt) is a gaussian function of the difference between the head direction
(Jt at time t and the preferred direction of the jth action cell. Figure 3 shows the
development of a policy over a few trials.

V(p)l Triall V(p) 1 TrialS V(P)l Triall3

0.5 0.5 0.5

I
0. 01 0:

0.5 0.5 0.5

0.5 0.5 .---'--- - 0.5
0 ------- 0 -0.5 -0.5

Figure 3: The RMW task: the value function gradually disseminates information
about reward proximity to all regions of the environment. Policies and paths are
also shown.

There is no analytical guarantee for the convergence of TD learning with policy
adaptation. However our simulations show that the algorithm always converges
for the RMW task. In a simulated arena of diameter 1m and with swimming speeds
of 20cm/s, the simulation matched the performance of the real rats very closely (see
figure S). This demonstrates that TD-based reinforcement learning is adequately
fast to account for the learning performance of real animals.

148 D. 1. Foster, R. G. M Morris and P. Dayan

2.2 Coordinate Learning

Although the learning of a value function and policy is appropriate for finding
a fixed platform, the actor-critic model does not allow the transfer of knowledge
from the task defined by one goal position to that defined by any other; thus it
could not generate the sort of one-trial learning that is shown by rats on the DMP
task (see figure 1 b). This requires acquisition of some goal-independent know ledge
about s~ace. A natural mechanism for this is the path integration or self-motion
system. 0,10 However, path integration presents two problems. First, since the rat
is put into the maze in a different position for each trial, how can it learn consistent
coordinates across the whole maze? Second, how can a general, powerful, but slow,
behavioral learning mechanism such as TO be integrated with a specific, limited,
but fast learning mechanism involving spatial coordinates?

Since TO critic learning is based on enforcing consistency in estimates of future
reward, we can also use it to learn spatially consistent coordinates on the basis
of samples of self-motion. It is assumed that the rat has an allocentric frame of
reference.1s The model learns parameterised estimates of the x and y coordinates
of all positions p: x(p) = Li w[fi(P) and y(p) = Li wY h(p), Importantly, while
place cells were again critical in supporting spatial representation, they do not embody
a map of space. The coordinate functions, like the value function previously, have to
be learned.

As the simulated rat moves around, the coordinate weights {w[} are adjusted
according to: t

Llwi ()((Llxt + X (pt+l) - X(pt)) L At - k h(pk) (3)
k=1

where Llxt is the self-motion estimate in the x direction. A similar update is applied
to {wn. In this case, the full TO(A) algorithm was used (with A = 0.9); however
TD(O) could also have been used, taking slightly longer. Figure 4a shows the x and
y coordinates at early and late phases of learning. It is apparent that they rapidly
become quite accurate - this is an extremely easy task in an open field maze.

An important issue in the learning of coordinates is drift, since the coordinate
system receives no direct information about the location of the origin. It turns out
that the three controlling factors over the implicit origin are: the boundary of the
arena, the prior setting of the coordinate weights (in this case all were zero) and
the position and prior value of any absorbing area (in this case the platform). If the
coordinate system as a whole were to drift once coordinates have been established,
this would invalidate coordinates that have been remembered by the rat over long
periods. However, since the expected value of the prediction error at time steps
should be zero for any self-consistent coordinate mapping, such a mapping should
remain stable. This is demonstrated for a single run: figure 4b shows the mean
value of coordinates x evolving over trials, with little drift after the first few trials.

We modeled the coordinate system as influencing the choice of swimming direction
in the manner of an abstract action. I5 The (internally specified) coordinates of the
most recent goal position are stored in short term memory and used, along with the
current coordinates, to calculate a vector heading. This vector heading is thrown
into the stochastic competition with the other possible actions, governed by a
single weight which changes in a similar manner to the other action weights (as in
equation 2, see also fig 4d), depending on the TO error, and on the angular proximity
of the current head direction to the coordinate direction. Thus, whether the the
coordinate-based direction is likely to be used depends upon its past performance.

One simplification in the model is the treatment of extinction. In the DMP task,

Hippocampal Model of Rat Spatial Abilities Using 1D Learning

" TJUAL

d i:
~Ol

~o

!"
~o

,.

149

III .1 26 16
TRIAL

Figure 4: The evolution of the coordinate system for a typical simulation run: a.)
coordinate outputs at early and late phases of learning, b.) the extent of drift in the
coordinates, as shown by the mean coordinate value for a single run, c.) a measure

f d· A2 ~ ~ {Xr (Pr.)-Xr -X(pr.)}2
o coor mate error for the same run (7E = r r. (Np-l)Nr ' where k
indexes measurement points (max Np) and r indexes runs (max Nr), Xr(Pk) is the
model estimate of X at position Pk, X(Pk) is the ideal estimate for a coordinate
system centred on zero, and Xr is the mean value over all the model coordinates,
d.) the increase during training of the probability of choosing the abstract action.
This demonstrates the integration of the coordinates into the control system.

real rats extinguish to a platform that has moved fairly quickly whereas the actor­
critic model extinguishes far more slowly. To get around this, when a simulated
rat reaches a goal that has just been moved, the value and action weights are
reinitialised, but the coordinate weights wf and wf, and the weights for the abstract
action, are not.

3 RESULTS

The main results of this paper are the replication by simulation of rat performance
on the RMW and DMP tasks. Figures la and b show the course of learning for
the rats; figures Sa and b for the model. For the DMP task, one-shot acquisition is
apparent by the end of training.

4 DISCUSSION

We have built a model for one-trial spatial learning in the watermaze which uses
a single TD learning algorithm in two separate systems. One system is based on a
reinforcement learning that can solve general Markovian decision problems, and
the other is based on coordinate learning and is specialised for an open-field water
maze. Place cells in the hippocampus offer an excellent substrate for learning the
actor, the critic and the coordinates.

The model is explicit about the relationship between the general and specific learn­
ing systems, and the learning behavior shows that they integrate seamlessly. As
currently constituted, the coordinate system would fail if there were a barrier in
the maze. We plan to extend the model to allow the coordinate system to specify
abstract targets other than the most recent platform position - this could allow
it fast navigation around a larger class of environments. It is also important to
improve the model of learning 'set' behavior - the information about the nature of

150 D. 1. Foster; R. G. M. Mo"is and P. Dayan

14

a 12 b 12

10

§.
z
~

S> ..
j:10\
~ .
~

~ .
'"~ ..

0~D.~yl~~y~2~D~.y~3~D~.y~47~~yS~~~.~~~y~7~~~y~.7D.~y9~

Figure 5: a.) Performance of the actor-critic model on the RMW task, and b.)
performance of the full model on the DMP task. The data for comparison is shown
in figures la and b.

the DMP task that the rats acquire over the course of the first few days of training.
Interestingly, learning set is incomplete - on the first trial of each day, the rats
still aim for the platform position on the previous day, even though this is never
correct.16 The significant differences in the path lengths on the first trial of each
day (evidence in figure Ib and figure 5b) come from the relative placements of the
platforms. However, the model did not use the same positions as the empirical
data, and, in any case, the model of exploration behavior is rather simplistic.

The model demonstrates that reinforcement learning methods are perfectly fast
enough to match empirical learning curves. This is fortunate, since, unlike most
models specifically designed for open-field navigation,6,4,5,2o RL methods can
provably cope with substantially more complicated tasks with arbitrary barriers,
etc, since they solve the temporal credit assignment problem in its full generality.
The model also addresses the problem that coordinates in different parts of the
same environment need to be mutually consistent, even if the animal only expe­
riences some parts on separate trials. An important property of the model is that
there is no requirement for the animal to have any explicit knowledge of the rela­
tionship between different place cells or place field position, size or shape. Such a
requirement is imposed in various models.9,4,6,2o

Experiments that are suggested by this model (as well as by certain others) con­
cern the relationship between hippocampally dependent and independent spatial
learning. First, once the coordinate system has been acquired, we predict that
merely placing the rat at a new location would be enough to let it find the platform
in one shot, though it might be necessary to reinforce the placement e.g. by first
placing the rat in a bucket of cold water. Second, we know that the establishment
of place fields in an environment happens substantiallr faster than establishment
of one-shot or even ordinary learning to a platform.2 We predict that blocking
plasticity in the hippocampus following the establishment of place cells (possibly
achieved without a platform) would not block learning of a platform. In fact, new
experiments show that after extensive pre-training, rats can perform one-trial learn­
ing in the same environment to new platform positions on the DMP task without
hippocampal synaptic plasticity. 16 This is in contrast to the effects of hippocampal
lesion, which completely disrupts performance. According to the model, coor­
dinates will have been learned during pre-training. The full prediction remains
untested: that once place fields have been established, coordinates could be learned
in the absence of hippocampal synaptic plasticity. A third prediction follows from
evidence that rats with restricted hippocampal lesions can learn the fixed platform

Hippocampal Model of Rat Spatial Abilities Using TD Learning 151

task, but much more slowly, based on a gradual "shaping" procedure.22 In our
model, they may also be able to learn coordinates. However, a lengthy training
procedure could be required, and testing might be complicated if expressing the
knowledge required the use of hippocampus dependent short-term memory for
the last platform location. I6

One way of expressing the contribution of the hippocampus in the model is to say
that its function is to provide a behavioural state space for the solution of complex
tasks. Hence the contribution of the hippocampus to navigation is to provide
place cells whose firing properties remain consistent in a given environment. It
follows that in different behavioural situations, hippocampal cells should provide
a representation based on something other than locations - and, indeed, there
is evidence for this.8 With regard to the role of the hippocampus in spatial tasks,
the model demonstrates that the hippocampus may be fundamentally necessary
without embodying a map.

References

[1] Barto, AG & Sutton, RS (1981) BioI. Cyber., 43:1-8.

[2] Barto, AG, Sutton, RS & Anderson, CW (1983) IEEE Trans. on Systems, Man
and Cybernetics 13:834-846.

[3] Barto, AG, Sutton, RS & Watkins, CJCH (1989) Tech Report 89-95, CAIS, Univ.
Mass., Amherst, MA.

[4] Blum, KI & Abbott, LF (1996) Neural Computation, 8:85-93.

[5] Brown, MA & Sharp, PE (1995) Hippocampus 5:171-188.

[6] Burgess, N, Reece, M & O'Keefe, J (1994) Neural Networks, 7:1065-1081.

[7] Dayan, P (1991) NIPS 3, RP Lippmann et aI, eds., 464-470.

[8] Eichenbaum, HB (1996) Curro Opin. Neurobiol., 6:187-195.

[9] Gerstner, W & Abbott, LF (1996) J. Computational Neurosci. 4:79-94.

[10] McNaughton, BL et a1 (1996) J. Exp. BioI., 199:173-185.

[11] Morris, RGM et al (1982) Nature, 297:681-683.

[12] O'Keefe, J & Dostrovsky, J (1971) Brain Res., 34(171).

[13] Olton, OS & Samuelson, RJ (1976) J. Exp. Psych: A.B.P., 2:97-116.
Rudy, JW & Sutherland, RW (1995) Hippocampus, 5:375-389.

[14] SchUltz, W, Dayan, P & Montague, PR (1997) Science, 275, 1593-1599.

[15] Singh, SP Reinforcement learning with a hierarchy of abstract models.

[16] Steele, RJ & Morris, RGM in preparation.

[17] Sutton, RS (1988) Machine Learning, 3:9-44.

[18] Taube, JS (1995) J. Neurosci. 15(1):70-86.

[19] Tsitsiklis, IN & Van Roy, B (1996) Tech Report LIDS-P-2322, M.LT.

[20] Wan, HS, Touretzky, OS & Redish, AD (1993) Proc. 1993 Connectionist Models
Summer School, Lawrence Erlbaum, 11-19.

[21] Watkins, CJCH (1989) PhD Thesis, Cambridge.

[22] Whishaw, IQ & Jarrard, LF (1996) Hippocampus

[23] Wilson, MA & McNaughton, BL (1993) Science 261:1055-1058.

Reinforcement Learning for Call Admission
Control and Routing in Integrated Service

Networks

Peter Marbach"
LIDS
MIT

Cambridge, MA, 02139
email: marbach@mi t . edu

Miriam Schulte
Zentrum Mathematik

Technische UniversWit Miinchen
D-80290 Munich

Germany

Oliver Mihatsch
Siemens AG

Corporate Technology, ZT IK 4
0-81730 Munich, Germany

email:oliver.mihatsch@
mchp.siemens.de

John N. Tsitsiklis
LIDS
MIT

Cambridge, MA, 02139
email: jnt@mit. edu

Abstract

In integrated service communication networks, an important problem is
to exercise call admission control and routing so as to optimally use the
network resources. This problem is naturally formulated as a dynamic
programming problem, which, however, is too complex to be solved ex­
actly. We use methods of reinforcement learning (RL), together with a
decomposition approach, to find call admission control and routing poli­
cies. The performance of our policy for a network with approximately
1045 different feature configurations is compared with a commonly used
heuristic policy.

1 Introduction

The call admission control and routing problem arises in the context where a telecommu­
nication provider wants to sell its network resources to customers in order to maximize
long term revenue. Customers are divided into different classes, called service types. Each
service type is characterized by its bandwidth demand, its average call holding time and
the immediate reward the network provider obtains, whenever a call of that service type is

• Author to whom correspondence should be addressed.

Reinforcement Learning for Call Admission Control and Routing 923

accepted. The control actions for maximizing the long term revenue are to accept or reject
new calls (Call Admission Control) and, if a call is accepted, to route the call appropri­
ately through the network (Routing). The problem is naturally formulated as a dynamic
programming problem, which, however, is too complex to be solved exactly. We use the
methodology of reinforcement learning (RL) to approximate the value function of dynamic
programming. Furthermore, we pursue a decomposition approach, where the network is
viewed as consisting of link processes, each having its own value function. This has the
advantage, that it allows a decentralized implementation of the training methods of RL
and a decentralized implementation of the call admission control and routing policies. Our
method learns call admission control and routing policies which outperform the commonly
used heuristic "Open-Shortest-Path-First" (OSPF) policy.

In some earlier related work, we applied RL to the call admission problem for a single
communication link in an integrated service environment. We found that in this case, RL
methods performed as well, but no better than, well-designed heuristics. Compared with
the single link problem, the addition of routing decisions makes the network problem more
complex and good heuristics are not easy to derive.

2 Call Admission Control and Routing

We are given a telecommunication network consisting of a set of nodes N = {I, ... , N} and
a set of Iinks .c = {I, ... , L}, where link I has a a total capacity of B(l) units of bandwidth.
We support a set M = {I, "', M} of different service types, where a service type m is
characterized by its bandwidth demand b(m), its average call holding time I/v(m) (here
we assume that the call holding times are exponentially distributed) and the immediate
reward c(m) we obtain, whenever we accept a call of that service type. A link can carry
simultaneously any combination of calls, as long as the bandwidth used by these calls does
not exceed the total bandwidth of the link (Capacity Constraint). When a new call of
service type m requests a connection between a node i and a node j, we can either reject
or accept that request (Call Admission Control). If we accept the call, we choose a route
out of a list of predefined routes (Routing). The call then uses b(m) units of bandwidth
on each link along that route for the duration of the call. We can, therefore, only choose
a route, which does not violate the capacity constraints of its links, if the call is accepted.
Furthermore, if we accept the call, we obtain an immediate reward c(m). The objective
is to exercise call admission control and routing in such a way that the long term revenue
obtained by accepting calls is maximized.

We can formulate the call admission control and routing problem using dynamic program­
ming (e. g. Bertsekas, 1995). Events w which incur state transitions, are arrivals of new
calls and call terminations. The state Xt at time t consists of a list for each route, indicating
how many calls of each service type are currently using that route. The decision/control Ut

applied at the time t of an arrival of a new call is to decide, whether to reject or accept the
call, and, if the call is accepted, how to route it through the network. The objective is to
learn a policy that assigns decisions to each state so as to

where E{·} is the expectation operator, tk is the time when the kth event happens,
g(Xtk' Wk, Ut,,) is the immediate reward associated with the kth event, and f3 is a discount
factor that makes immediate rewards more valuable than future ones.

924 P Marbach, O. Mihatsch, M. Schulte and 1. N. Tsitsiklis

3 Reinforcement Learning Solution

RL methods solve optimal control (or dynamic programming) problems by learning good
approximations to the optimal value function r, given by the solution to the Bellman op­
timality equation which takes the following form for the caB admission control and routing
problem

J*(x) = Er {e- th } Ew { max [g(x,w, u) + J*(X I)]}
ueU(x)

where U (x) is the set of control actions available in the current state x, T is the time when
the first event w occurs and x' is the successor state. Note that x' is a deterministic function
of the current state x, the control u and the event w.

RL uses a compact representation j (', 0) to learn and store an estimate of J" (.). On each
event, i(., 0) is both used to make decisions and to update the parameter vector e. In the
caB admission control and routing problem, one has only to choose a control action when
a new call requests a connection. In such a case, J (,,0) is used to choose a control action
according to the formula

u=arg max [g(x,w,u) + J(X', e)]
ueU(x)

(1)

This can be expressed in words as follows.

Decision Making: When a new call requests a connection, use J (', e) to evaluate, for each
permissible route, the successor state x' we transit to, when we choose that route, and pick
a route which maximizes that value. If the sum of the immediate reward and the value
associated with this route is higher than the value of the current state, route the call over
that route; otherwise reject the call.

Usually, RL uses a global feature extractor f(x) to form an approximate compact rep­
resentation of the state of the system, which forms the input to a function approximator
i(., e). Sutton's temporal difference (TO()'» algorithms (Sutton, 1988) can then be used
to train i(., 0) to learn an estimate of J*. Using ID(O), the update at the kth event takes
the following form

where

dk e-/J(t/c-t/c-d (g(Xt/c, Wk, Ut/c) + J(!(Xt/c), ek-I))

-J(I(Xt/C_l)' Ok-I)

and where 'Yk is a small step size parameter and Utk is the control action chosen according
to the decision making rule described above.

Here we pursue an approach where we view the network as being composed of link pro­
cesses. Furthermore, we decompose immediate rewards g(Xtk' Wk, Ut/c) associated with the
kth event, into link rewards g(l) (Xt/c, Wk, Ut/c) such that

L

g(Xtk' Wk. Ut/c) = L gil) (Xtl:' Wk, UtI:)

1=1

We then define, for each link I, a value function J(I) (I(l) (x), e(I»), which is interpreted as
an estimate of the discounted long term revenue associated with that link. Here, f(l) defines
a local feature, which forms the input to the value function associated with link I. To obtain

Reinforcement Learning for Call Admission Control and Routing

an approximation of J* (x), the functions](1) (J(l) (x), 0(1)) are combined as follows

L L](1) (J(I) (x), (J(l)).

1=1

925

At each event, we update the parameter vector (J(l) of link 1, only if the event is associated
with the link. Events associated with a link 1 are arrivals of new calls which are potentially
routed over link 1 and termination of calls which were routed over the link I. The update
rule of the parameter vector 0(1) is very similar to the TD(O) algorithm described above

(J(l) - (J(l) + "V(I)d(I)V ()](l) (/(1) (x) (J(l))
k - k-l Ik k 9 I tk_1 , k-l (2)

where

e - i3(t~') -t~/~ I) (g(l) (x t(l), Wkl) , Ut(l)) +](l) (J(l) (xt(l»), (Jkl~ 1))
k k k

(3)

_](1) (J(l) (x t (/)), (Jkl~l)
k-I

and where Ill) is a small step size parameter and tr) is the time when the kth event will
associated with link 1 occurs. Whenever a new call of a service of type m is routed over
a route r which contains the link i, the immediate reward g(l) associated with the link i is
equal to c(m) / #r, where #r is the number of links along the route r. For all other events,
the immediate reward associated with link 1 is equal to O.

The advantage of this decomposition approach is that it allows decentralized training and
decentralized decision making. Furthermore, we observed that this decomposition ap­
proach leads to much shorter training times for obtaining an approximation for J* than the
approach without decomposition. All these features become very important if one consid­
ers applying methods of RL to large integrated service networks supporting a fair number
of different service types.

We use exploration to obtain the states at which we update the parameter vector O. At each
state, with probability p == 0.5, we apply a random action, instead of the action recom­
mended by the current value function, to generate the next state in our training trajectory.
However, the action Ut(I), that is used in the update rule (3), is still the one chosen ac-

k

cording to the rule given in (1). Exploration during the training significantly improved the
performance of the policy.

Table I: Service Types.

SERVICE TYPE m 1 2 3

BANDWIDTH DEMAND b(m) 1 3 5
AVERAGE HOLDING TIME l/v(m) 10 10 2
IMMEDIATE REWARD c(m) 1 2 50

4 Experimental Results

In this section, we present experimental results obtained for the case of an integrated service
network consisting of 4 nodes and 12 unidirectional links. There are two different classes
of links with a total capacity of 60 and 120 units of bandwidth, respectively (indicated by
thick and thin arrows in Figure 1). We assume a set M == {I, 2, 3} of three different ser­
vice types. The corresponding bandwidth demands, average holding times and immediate

926 P. Marbach, O. Mihatsch, M Schulte and 1. N. Tsitsiklis

Figure 1: Telecommunication Network Consisting of 4 Nodes and 12 Unidirectional Links.

PERFORMANCE DURING LEAANING

Figure 2: Average Reward per TIme Unit During the Whole Training Phase of 107 Steps
(Solid) and During Shorter Time Windows of 105 Steps (Dashed).

rewards are given in Table 1. Call arrivals are modeled as independent Poisson processes,
with a separate mean for each pair of source and destination nodes and each service type.
Furthermore, for each source and destination node pair, the list of possible routes consists
of three entries: the direct path and the two alternative 2-hop-routes.

We compare the policy obtained through RL with the commonly used heuristic OSPF
(Open Shortest Path First). For every pair of source and destination nodes, OSPF orders
the list of predefined routes. When a new call arrives, it is routed along the first route in the
corresponding list, that does not violate the capacity constraint; if no such a route exists,
the call is rejected. We use the average reward per unit time as performance measure to
compare the two policies.

For the RL approach, we use a quadratic approximator, which is linear with respect to the
parameters ()(I), as a compact representation of](1). Other approximation architectures
were tried, but we found that the quadratic gave the best results with respect to both the
speed of convergence and the final performance. As inputs to the compact representation

Reinforcement Learning for Call Admission Control and Routing

o

o 5

AVERAGE REWARD

potential reward
reward obtained by RL
reward obtained by OSPF

50

10 15

100 150
reward per time un~

COMPARISON OF REJECTION RATES

20 25 30 35
percentage of calls rejected

927

200 250

40 45 50

Figure 3: Comparison of the Average Rewards and Rejection Rates of the RL and OSPF
Policies.

o 10

o 10

ROUTING (OSPF)

direct link ----~~------.0:-= alternative route no. 1
alternative route no. 2 ..
20 30 ~ 50 ~ ro ~

percentage of calls routed on direct and alternative paths

direct link
alternative route no. 1
alternative route no. 2

ROUTING (RL)

20 30 40 50 60 70 80
percentage of calls routed on direct and alternative paths

90

90

100

100

Figure 4: Comparison of the Routing Behaviour of the RL and OSPF Policies.

](/), we use a set of local features, which we chose to be the number of ongoing calls
of each service type on link l. For the 4-node network, there are approximately 1.6. 1045

different feature configurations. Note that the total number of possible states is even higher.

The results of the case studies are given in in Figure 2 (Training Phase), Figure 3 (Perfor­
mance) and Figure 4 (Routing Behaviour). We give here a summary of the results.

Training Phase: Figure 2 shows the average reward of the RL policy as a function of
the training steps. Although the average reward increases during the training, it does not
exceed 141, the average reward of the heuristic OSPF. This is due to the high amount of
exploration in the training phase.

Performance Comparison: The policy obtained through RL gives an average reward of
212, which as about 50% higher than the one of 141 achieved by OSPF. Furthermore, the
RL policy reduces the number of rejected calls for all service types. The most significant
reduction is achieved for calls of service type 3, the service type, which has the highest

928 P. Marbach, O. Mihatsch, M Schulte and I. N. Tsitsiklis

immediate reward. Figure 3 also shows that the average reward of the RL policy is close
to the potential average reward of 242, which is the average reward we would obtain if
all calls were accepted. This leaves us to believe that the RL policy is close to optimal.
Figure 4 compares the routing behaviour of the RL control policy and OSPF. While OSPF
routes about 15% - 20% of all calls along one of the alternative 2-hop-routes, the RL
policy almost uses alternative routes for calls of type 3 (about 25%) and routes calls of the
other two service types almost exclusively over the direct route. This indicates, that the RL
policy uses a routing scheme, which avoids 2-hop-routes for calls of service type 1 and 2,
and which allows us to use network resources more efficiently.

5 Conclusion

The call admission control and routing problem for integrated service networks is natu­
rally formulated as a dynamic programming problem, albeit one with a very large state
space. Traditional dynamic programming methods are computationally infeasible for such
large scale problems. We use reinforcement learning, based on Sutton's (1988) T D(O),
combined with a decomposition approach, which views the network as consisting of link
processes. This decomposition has the advantage that it allows decentralized decision mak­
ing and decentralized training, which reduces significantly the time of the training phase.
We presented a solution for an example network with about 1045 different feature config­
urations. Our RL policy clearly outperforms the commonly used heuristic OSPF. Besides
the game of backgammon (Tesauro, 1992), the elevator scheduling (Crites & Barto, 1996),
the jop-shop scheduling (Zhang & Dietterich, 1996) and the dynamic channel allocation
(Singh & Bertsekas, 1997), this is another successful application of RL to a large-scale
dynamic programming problem for which a good heuristic is hard to find.

References

Bertsekas, D. P; (1995) Dynamic Programming and Optimal Control. Athena Scientific,
Belmont, MA.

Crites, R. H., Barto, A. G. (1996) Improving elevator performance using reinforcement
learning. In D. S. Touretzky, M. C. Mozer and M. E. Hasselmo (eds.), Advances in Neural
Information Processing Systems 8, pp. 1017-1023. Cambridge, MA: MIT Press.

Singh, S., Bertsekas, D. P. (1997) Reinforcement learning for dynamic channel allocation
in cellular telephone systems. To appear in Advances in Neural Information Processing
Systems 9, Cambridge, MA: MIT Press.

Sutton, R. S. (1988) Learning to predict by the method of temporal differences. Machine
Learning, 3:9-44.

Tesauro, G. J. (1992) Practical issues in temporal difference learning. Machine Learning,
8(3/4):257-277.

Zhang, W., Dietterich, T. G. (1996) High performance job-shop scheduling with a time­
delay TD(>.) network. In D. S. Touretzky, M. C. Mozer and M. E. Hasselmo (eds.), Ad­
vances in Neural Information Processing Systems 8, pp. 1024-1030. Cambridge. MA: MIT
Press.

