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Converging evidence has shown that human object recognition 
depends on familiarity with the images of an object. Further, 
the greater the similarity between objects, the stronger is the 
dependence on object appearance, and the more important two­
dimensional (2D) image information becomes. These findings, how­
ever, do not rule out the use of 3D structural information in recog­
nition, and the degree to which 3D information is used in visual 
memory is an important issue. Liu, Knill, & Kersten (1995) showed 
that any model that is restricted to rotations in the image plane 
of independent 2D templates could not account for human perfor­
mance in discriminating novel object views. We now present results 
from models of generalized radial basis functions (GRBF), 2D near­
est neighbor matching that allows 2D affine transformations, and 
a Bayesian statistical estimator that integrates over all possible 2D 
affine transformations. The performance of the human observers 
relative to each of the models is better for the novel views than 
for the familiar template views, suggesting that humans generalize 
better to novel views from template views. The Bayesian estima­
tor yields the optimal performance with 2D affine transformations 
and independent 2D templates. Therefore, models of 2D affine 
matching operations with independent 2D templates are unlikely 
to account for human recognition performance. 

1 Introduction 

Object recognition is one of the most important functions in human vision. To 
understand human object recognition, it is essential to understand how objects are 
represented in human visual memory. A central component in object recognition 
is the matching of the stored object representation with that derived from the im­
age input. But the nature of the object representation has to be inferred from 
recognition performance, by taking into account the contribution from the image 
information. When evaluating human performance, how can one separate the con-
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tributions to performance of the image information from the representation? Ideal 
observer analysis provides a precise computational tool to answer this question. An 
ideal observer's recognition performance is restricted only by the available image 
information and is otherwise optimal , in the sense of statistical decision theory, 
irrespective of how the model is implemented. A comparison of human to ideal 
performance (often in terms of efficiency) serves to normalize performance with re­
spect to the image information for the task. We consider the problem of viewpoint 
dependence in human recognition. 

A recent debate in human object recognition has focused on the dependence of recog­
nition performance on viewpoint [1 , 6]. Depending on the experimental conditions, 
an observer's ability to recognize a familiar object from novel viewpoints is impaired 
to varying degrees. A central assumption in the debate is the equivalence in view­
point dependence and recognition performance. In other words, the assumption is 
that viewpoint dependent performance implies a viewpoint dependent representa­
tion, and that viewpoint independent performance implies a viewpoint independent 
representation. However, given that any recognition performance depends on the 
input image information, which is necessarily viewpoint dependent, the viewpoint 
dependence of the performance is neither necessary nor sufficient for the viewpoint 
dependence of the representation. Image information has to be factored out first, 
and the ideal observer provides the means to do this. 

The second aspect of an ideal observer is that it is implementation free. Con­
sider the GRBF model [5], as compared with human object recognition (see be­
low). The model stores a number of 2D templates {Ti} of a 3D object 0, 
and reco~nizes or rejects a stimulus image S by the following similarity measure 
~iCi exp UITi - SI1 2 j2(2 ), where Ci and a are constants. The model's performance 
as a function of viewpoint parallels that of human observers. This observation has 
led to the conclusion that the human visual system may indeed, as does the model, 
use 2D stored views with GRBF interpolation to recognize 3D objects [2]. Such a 
conclusion, however, overlooks implementational constraints in the model, because 
the model's performance also depends on its implementations. Conceivably, a model 
with some 3D information of the objects can also mimic human performance, so 
long as it is appropriately implemented. There are typically too many possible 
models that can produce the same pattern of results. 

In contrast, an ideal observer computes the optimal performance that is only limited 
by the stimulus information and the task. We can define constrained ideals that are 
also limited by explicitly specified assumptions (e.g., a class of matching operations). 
Such a model observer therefore yields the best possible performance among the 
class of models with the same stimulus input and assumptions. In this paper, 
we are particularly interested in constrained ideal observers that are restricted in 
functionally Significant aspects (e.g., a 2D ideal observer that stores independent 
2D templates and has access only to 2D affine transformations) . The key idea is 
that a constrained ideal observer is the best in its class. So if humans outperform 
this ideal observer, they must have used more than what is available to the ideal. 
The conclusion that follows is strong: not only does the constrained ideal fail to 
account for human performance, but the whole class of its implementations are also 
falsified. 

A crucial question in object recognition is the extent to which human observers 
model the geometric variation in images due to the projection of a 3D object onto a 
2D image. At one extreme, we have shown that any model that compares the image 
to independent views (even if we allow for 2D rigid transformations of the input 
image) is insufficient to account for human performance. At the other extreme, it 
is unlikely that variation is modeled in terms of rigid transformation of a 3D object 
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template in memory. A possible intermediate solution is to match the input image 
to stored views, subject to 2D affine deformations. This is reasonable because 2D 
affine transformations approximate 3D variation over a limited range of viewpoint 
change. 

In this study, we test whether any model limited to the independent comparison 
of 2D views, but with 2D affine flexibility, is sufficient to account for viewpoint 
dependence in human recognition. In the following section, we first define our ex­
perimental task, in which the computational models yield the provably best possible 
performance under their specified conditions. We then review the 2D ideal observer 
and GRBF model derived in [4], and the 2D affine nearest neighbor model in [8]. 
Our principal theoretical result is a closed-form solution of a Bayesian 2D affine ideal 
observer. We then compare human performance with the 2D affine ideal model, as 
well as the other three models. In particular, if humans can classify novel views of 
an object better than the 2D affine ideal, then our human observers must have used 
more information than that embodied by that ideal. 

2 The observers 

Let us first define the task. An observer looks at the 2D images of a 3D wire 
frame object from a number of viewpoints. These images will be called templates 
{Td. Then two distorted copies of the original 3D object are displayed. They 
are obtained by adding 3D Gaussian positional noise (i.i.d.) to the vertices of the 
original object. One distorted object is called the target, whose Gaussian noise has 
a constant variance. The other is the distract or , whose noise has a larger variance 
that can be adjusted to achieve a criterion level of performance. The two objects 
are displayed from the same viewpoint in parallel projection, which is either from 
one of the template views, or a novel view due to 3D rotation. The task is to choose 
the one that is more similar to the original object. The observer's performance is 
measured by the variance (threshold) that gives rise to 75% correct performance. 
The optimal strategy is to choose the stimulus S with a larger probability p (OIS). 
From Bayes' rule, this is to choose the larger of p (SIO). 

Assume that the models are restricted to 2D transformations of the image, and 
cannot reconstruct the 3D structure of the object from its independent templates 
{Ti}. Assume also that the prior probability p(Td is constant. Let us represent S 
and Ti by their (x, y) vertex coordinates: (X Y )T, where X = (Xl, x2, ... , xn), 
y = (yl, y2 , ... , yn). We assume that the correspondence between S and T i is 
solved up to a reflection ambiguity, which is equivalent to an additional template: 
Ti = (xr yr )T, where X r = (xn, ... ,x2,xl ), yr = (yn, ... ,y2,yl). We still 
denote the template set as {Td. Therefore, 

(1) 

In what follows, we will compute p(SITi)p(Ti ), with the assumption that S = 
F (Ti) + N (0, crI2n ), where N is the Gaussian distribution, 12n the 2n x 2n identity 
matrix, and :F a 2D transformation. For the 2D ideal observer, :F is a rigid 2D 
rotation. For the GRBF model, F assigns a linear coefficient to each template 
T i , in addition to a 2D rotation. For the 2D affine nearest neighbor model, :F 
represents the 2D affine transformation that minimizes liS - Ti11 2 , after Sand Ti 
are normalized in size. For the 2D affine ideal observer, :F represents all possible 
2D affine transformations applicable to T i. 
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2.1 The 2D ideal observer 

The templates are the original 2D images, their mirror reflections, and 2D rotations 
(in angle ¢) in the image plane. Assume that the stimulus S is generated by adding 
Gaussian noise to a template, the probability p(SIO) is an integration over all 
templates and their reflections and rotations. The detailed derivation for the 2D 
ideal and the GRBF model can be found in [4]. 

Ep(SITi)p(Ti) ex: E J d¢exp (-liS - Ti(¢)112 /2(2 ) • (2) 

2.2 The GRBF model 

The model has the same template set as the 2D ideal observer does. Its training 
requires that EiJ;7r d¢Ci(¢)N(IITj - Ti(¢)II,a) = 1, j = 1,2, ... , with which {cd 
can be obtained optimally using singular value decomposition. When a pair of new 
stimuli is} are presented, the optimal decision is to choose the one that is closer 
to the learned prototype, in other words, the one with a smaller value of 

111- E 127r d¢ci(¢)exp (_liS -2:~(¢)1I2) II. (3) 

2.3 The 2D affine nearest neighbor model 

It has been proved in [8] that the smallest Euclidean distance D(S, T) between S 
and T is, when T is allowed a 2D affine transformation, S ~ S/IISII, T ~ T/IITII, 

D2(S, T) = 1 - tr(S+S . TTT)/IITII2, (4) 

where tr strands for trace, and S+ = ST(SST)-l. The optimal strategy, therefore, 
is to choose the S that gives rise to the larger of E exp (_D2(S, Ti)/2a2) , or the 
smaller of ED2(S, Ti). (Since no probability is defined in this model, both measures 
will be used and the results from the better one will be reported.) 

2.4 The 2D affine ideal observer 

We now calculate the Bayesian probability by assuming that the prior probabil­
ity distribution of the 2D affine transformation, which is applied to the template 

T i , AT + Tr = (~ ~) Ti + (~: ::: ~:), obeys a Gaussian distribution 

N(Xo,,,,/16 ), where Xo is the identity transformation xl' = (a,b,c,d,tx,t y) = 
(1,0,0,1,0,0). We have 

Ep(SIT i ) = E i: dX exp (-IIATi + Tr - SII 2/2(2) (5) 

= EC(n, a, ",/)deC 1 (QD exp (tr (KfQi(QD-1QiKi) /2(12), (6) 

where C(n, a, ",/) is a function of n, a, "'/; Q' = Q + ",/-212, and 

Q _ ( XT . XT XT · Y T ) QK _ ( XT· Xs Y T . Xs) -21 
- Y T ·XT YT ·YT ' - XT ·Ys YT .Ys +"'/ 2· 

(7) 

The free parameters are "'/ and the number of 2D rotated copies for each T i (since 
a 2D affine transformation implicitly includes 2D rotations, and since a specific 
prior probability distribution N(Xo, ",/1) is assumed, both free parameters should 
be explored together to search for the optimal results). 



2D Observers for Hwnan 3D Object Recognition? 833 

• 
• • • • 
• 

Figure 1: Stimulus classes with increasing structural regularity: Balls, Irregular, 
Symmetric, and V-Shaped. There were three objects in each class in the experiment. 

2.5 The human observers 

Three naive subjects were tested with four classes of objects: Balls, Irregular, Sym­
metric, and V-Shaped (Fig. 1). There were three objects in each class. For each 
object, 11 template views were learned by rotating the object 60° /step, around 
the X- and Y-axis, respectively. The 2D images were generated by orthographic 
projection, and viewed monocularly. The viewing distance was 1.5 m. During the 
test, the standard deviation of the Gaussian noise added to the target object was 
(J"t = 0.254 cm. No feedback was provided. 

Because the image information available to the humans was more than what was 
available to the models (shading and occlusion in addition to the (x, y) positions of 
the vertices), both learned and novel views were tested in a randomly interleaved 
fashion. Therefore, the strategy that humans used in the task for the learned and 
novel views should be the same. The number of self-occlusions, which in princi­
ple provided relative depth information, was counted and was about equal in both 
learned and novel view conditions. The shading information was also likely to be 
equal for the learned and novel views. Therefore, this additional information was 
about equal for the learned and novel views, and should not affect the comparison 
of the performance (humans relative to a model) between learned and novel views. 
We predict that if the humans used a 2D affine strategy, then their performance 
relative to the 2D affine ideal observer should not be higher for the novel views than 
for the learned views. One reason to use the four classes of objects with increasing 
structural regularity is that structural regularity is a 3D property (e.g., 3D Sym­
metric vs. Irregular), which the 2D models cannot capture. The exception is the 
planar V-Shaped objects, for which the 2D affine models completely capture 3D ro­
tations, and are therefore the "correct" models. The V-Shaped objects were used in 
the 2D affine case as a benchmark. If human performance increases with increasing 
structural regularity of the objects, this would lend support to the hypothesis that 
humans have used 3D information in the task. 

2.6 Measuring performance 

A stair-case procedure [7] was used to track the observers' performance at 75% 
correct level for the learned and novel views, respectively. There were 120 trials 
for the humans, and 2000 trials for each of the models. For the GRBF model, 
the standard deviation of the Gaussian function was also sampled to search for 
the best result for the novel views for each of the 12 objects, and the result for 
the learned views was obtained accordingly. This resulted in a conservative test 
of the hypothesis of a GRBF model for human vision for the following reasons: 
(1) Since no feedback was provided in the human experiment and the learned and 
novel views were randomly intermixed, it is not straightforward for the model to 
find the best standard deviation for the novel views, particularly because the best 
standard deviation for the novel views was not the same as that for the learned 
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ones. The performance for the novel views is therefore the upper limit of the 
model's performance. (2) The subjects' performance relative to the model will be 
defined as statistical efficiency (see below). The above method will yield the lowest 
possible efficiency for the novel views, and a higher efficiency for the learned views, 
since the best standard deviation for the novel views is different from that for the 
learned views. Because our hypothesis depends on a higher statistical efficiency for 
the novel views than for the learned views, this method will make such a putative 
difference even smaller. Likewise, for the 2D affine ideal, the number of 2D rotated 
copies of each template Ti and the value I were both extensively sampled, and the 
best performance for the novel views was selected accordingly. The result for the 
learned views corresponding to the same parameters was selected. This choice also 
makes it a conservative hypothesis test. 

3 Results 
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Figure 2: The threshold standard deviation of the Gaussian noise, added to the 
distractor in the test pair, that keeps an observer's performance at the 75% correct 
level, for the learned and novel views, respectively. The dotted line is the standard 
deviation of the Gaussian noise added to the target in the test pair. 

Fig. 2 shows the threshold performance. We use statistical efficiency E to com­
pare human to model performance. E is defined as the information used by 
humans relative to the ideal observer [3] : E = (d~uman/d~deal)2, where d' 
is the discrimination index. We have shown in [4] that, in our task, E = 

((a~1!f;actor)2 - (CTtarget)2) / ((CT~~~~~tor)2 - (CTtarget)2) , where CT is the thresh­
old. Fig. 3 shows the statistical efficiency of the human observers relative to each 
of the four models. 

We note in Fig. 3 that the efficiency for the novel views is higher than those for the 
learned views (several of them even exceeded 100%), except for the planar V-Shaped 
objects. We are particularly interested in the Irregular and Symmetric objects in 
the 2D affine ideal case, in which the pairwise comparison between the learned 
and novel views across the six objects and three observers yielded a significant 
difference (binomial, p < 0.05). This suggests that the 2D affine ideal observer 
cannot account for the human performance, because if the humans used a 2D affine 
template matching strategy, their relative performance for the novel views cannot 
be better than for the learned views. We suggest therefore that 3D information was 
used by the human observers (e.g., 3D symmetry). This is supported in addition 
by the increasing efficiencies as the structural regularity increased from the Balls, 
Irregular, to Symmetric objects (except for the V-Shaped objects with 2D affine 
models). 
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Figure 3: Statistical efficiencies of human observers relative to the 2D ideal observer, 
the GRBF model, the 2D affine nearest neighbor model, and the 2D affine ideal 
observer_ 

4 Conclusions 

Computational models of visual cognition are subject to information theoretic as 
well as implementational constraints. When a model's performance mimics that of 
human observers, it is difficult to interpret which aspects of the model characterize 
the human visual system. For example, human object recognition could be simu­
lated by both a GRBF model and a model with partial 3D information of the object. 
The approach we advocate here is that, instead of trying to mimic human perfor­
mance by a computational model, one designs an implementation-free model for a 
specific recognition task that yields the best possible performance under explicitly 
specified computational constraints. This model provides a well-defined benchmark 
for performance, and if human observers outperform it, we can conclude firmly that 
the humans must have used better computational strategies than the model. We 
showed that models of independent 2D templates with 2D linear operations cannot 
account for human performance. This suggests that our human observers may have 
used the templates to reconstruct a representation of the object with some (possibly 
crude) 3D structural information. 
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