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Abstract

A Lyapunov function for excitatory-inhibitory networks is constructed.
The construction assumes symmetric interactions within excitatory and
inhibitory populations of neurons, and antisymmetric interactions be-
tween populations. The Lyapunov function yields sufficient conditions
for the global asymptotic stability of fixed points. If these conditions
are violated, limit cycles may be stable. The relations of the Lyapunov
function to optimization theory and classical mechanics are revealed by
minimax and dissipative Hamiltonian forms of the network dynamics.

The dynamics of a neural network with symmetric interactions provably converges to
fixed points under very general assumptions[1, 2]. This mathematical result helped
to establish the paradigm of neural computation with fixed point attractors[3]. But
in reality, interactions between neurons in the brain are asymmetric. Furthermore,
the dynamical behaviors seen in the brain are not confined to fixed point attractors,
but also include oscillations and complex nonperiodic behavior. These other types
of dynamics can be realized by asymmetric networks, and may be useful for neural
computation. For these reasons, it is important to understand the global behavior
of asymmetric neural networks.

The interaction between an excitatory neuron and an inhibitory neuron is clearly
asymmetric. Here we consider a class of networks that incorporates this fundamen-
tal asymmetry of the brain’s microcircuitry. Networks of this class have distinct
populations of excitatory and inhibitory neurons, with antisymmetric interactions
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between populations and symmetric interactions within each population. Such net-
works display a rich repertoire of dynamical behaviors including fixed points, limit
cycles[4, 5] and traveling waves|[6].

After defining the class of excitatory-inhibitory networks, we introduce a Lyapunov
function that establishes sufficient conditions for the global asymptotic stability
of fixed points. The generality of these conditions contrasts with the restricted
nature of previous convergence results, which applied only to linear networks(5], or
to nonlinear networks with infinitely fast inhibition[7].

The use of the Lyapunov function is illustrated with a competitive or winner-take-all
network, which consists of an excitatory population of neurons with recurrent inhi-
bition from a single neuron(8]. For this network, the sufficient conditions for global
stability of fixed points also happen to be necessary conditions. In other words,
we have proved global stability over the largest possible parameter regime in which
it holds, demonstrating the power of the Lyapunov function. There exists another
parameter regime in which numerical simulations display limit cycle oscillations[7].

Similar convergence proofs for other excitatory-inhibitory networks may be obtained
by tedious but straightforward calculations. All the necessary tools are given in the
first half of the paper. But the rest of the paper explains what makes the Lyapunov
function especially interesting, beyond the convergence results it yields: its role in
a conceptual framework that relates excitatory-inhibitory networks to optimization
theory and classical mechanics.

The connection between neural networks and optimization[3] was established by
proofs that symmetric networks could find minima of objective functions([1, 2]. Later
it was discovered that excitatory-inhibitory networks could perform the minimax
computation of finding saddle points[9, 10, 11], though no general proof of this was
given at the time. Our Lyapunov function finally supplies such a proof, and one of
its components is the objective function of the network’s minimax computation.

Our Lyapunov function can also be obtained by writing the dynamics of excitatory-
inhibitory networks in Hamiltonian form, with extra velocity-dependent terms. If
these extra terms are dissipative, then the energy of the system is nonincreasing,
and is a Lyapunov function. If the extra terms are not purely dissipative, limit
cycles are possible. Previous Hamiltonian formalisms for neural networks made
the more restrictive assumption of purely antisymmetric interactions, and did not
include the effect of dissipation[12].

This paper establishes sufficient conditions for global asymptotic stability of fixed
points. The problem of finding sufficient conditions for oscillatory and chaotic
behavior remains open. The perspectives of minimax and Hamiltonian dynamics
may help in this task.

1 EXCITATORY-INHIBITORY NETWORKS

The dynamics of an excitatory-inhibitory network is defined by
¢+ = f(u+ Az - By), (1)
ny+y = glv+BTz-Cy). (2)

The state variables are contained in two vectors z € R™ and y € R™, which represent
the activities of the excitatory and inhibitory neurons, respectively.

The symbol f is used in both scalar and vector contexts. The scalar function
f : R = R is monotonic nondecreasing. The vector function f : R™ — R™ is
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defined by applying the scalar function f to each component of a vector argument,
ie., f(z) = (f(z1),.-., f(zm)).- The symbol g is used similarly.

The symmetry of interaction within each population is imposed by the constraints
A = AT and C = CT. The antisymmetry of interaction between populations is
manifest in the occurrence of —B and BT in the equations. The terms “excitatory”
and “inhibitory” are appropriate with the additional constraint that the entries of
matrices A, B, and C are nonnegative. Though this assumption makes sense in
a neurobiological context the mathematics does not depends on it. The constant
vectors u and v represent tonic input from external sources, or alternatively bias
intrinsic to the neurons.

The time constants 7, and 7, set the speed of excitatory and inhibitory synapses,
respectively. In the limit of infinitely fast inhibition, 7, = 0, the convergence
theorems for symmetric networks are applicable[1, 2], though some effort is required
in applying them to the case C' # 0. If the dynamics converges for 7, = 0, then
there exists some neighborhood of zero in which it still converges|7]. Our Lyapunov
function goes further, as it is valid for more general 7.

The potential for oscillatory behavior in excitatory-inhibitory networks like (1) has
long been known[4, 7]. The origin of oscillations can be understood from a simple
two neuron model. Suppose that neuron 1 excites neuron 2, and receives inhibition
back from neuron 2. Then the effect is that neuron 1 suppresses its own activity
with an effective delay that depends on the time constant of inhibition. If this delay
is long enough, oscillations result. However, these oscillations will die down to a
fixed point, as the inhibition tends to dampen activity in the circuit. Only if neuron
1 also excites itself can the oscillations become sustained.

Therefore, whether oscillations are damped or sustained depends on the choice of
parameters. In this paper we establish sufficient conditions for the global stability of
fixed points in (1). The violation of these sufficient conditions indicates parameter
regimes in which there may be other types of asymptotic behavior, such as limit
cycles.

2 LYAPUNOV FUNCTION

We will assume that f and g are smooth and that their inverses f~! and g~ exist.
If the function f is bounded above and/or below, then its inverse f~! is defined on
the appropriate subinterval of R. Note that the set of (z,y) lying in the range of
(f,9) is a positive invariant set under (1) and that its closure is a global attractor
for the system.

The scalar function F is defined as the antiderivative of f, and F as the Legendre
transform F(z) = maxp{pz — F(p)}. The derivatives of these conjugate convex
functions are,

Flz)=f(z), F@)=f"0). @)

The vector versions of these functions are defined componentwise, as in the definition
of the vector version of f. The conjugate convex pair G, G is defined similarly.

The Lyapunov function requires generalizations of the standard kinetic energies
7,42 /2 and 7,3%/2. These are constructed using the functions & : R™ x R™ — R
and I': R* x R™ — R, defined by
d(p,z) = 17F(p)-2Tp+1TF(2), (4)
T(g,y) = 17G(9) -y"q+17G(y) . (5)
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The components of the vector 1 are all ones; its dimensionality should be clear
from context. The function ®(p,z) is lower bounded by zero, and vanishes on
the manifold f(p) = z, by the definition of the Legendre transform. Setting p =
u+ Az — By, we obtain the generalized kinetic energy 7, '®(u + Az — By, z), which
vanishes when & = 0 and is positive otherwise. It reduces to 7,4%/2 in the special
case where f is the identity function.

To construct the Lyapunov function, a multiple of the saddle function
S=—-uTz- %:cTAm +vTy - %yTCy +1TF(z) +y" BTz - 17G(y) (6)

is added to the kinetic energy. The reason for the name “saddle function” will be
explained later. Then

L=17"®u+ Az — By,z) +7,'T(v+ BTz - Cy,y) + S (7)

is a Lyapunov function provided that it is lower bounded, nonincreasing, and L only
vanishes at fixed points of the dynamics. Roughly speaking, this is enough to prove
the global asymptotic stability of fixed points, although some additional technical
details may be involved.

In the next section, the Lyapunov function will be applied to an example network,
yielding sufficient conditions for the global asymptotic stability of fixed points.
In this particular network, the sufficient conditions also happen to be necessary
conditions. Therefore the Lyapunov function succeeds in delineating the largest
possible parameter regime in which point attractors are globally stable. Of course,
there is no guarantee of this in general, but the power of the Lyapunov function is
manifest in this instance.

Before proceeding to the example network, we pause to state some general conditions
for L to be nonincreasing. A lengthy but straightforward calculation shows that
the time derivative of L is given by
L = iTAz -97Cy (8)
—(rz' + )i [f T (red + 2) — £ (2))

—(rt =) g (g +y) — 9 (W) -
Therefore, L is nonincreasing provided that
(a—b)TA(a—0b)
max < 1l4rrm, 9
@@ S T 2
_ (a=b)TC(a—b)
min > 1-r7y. 10
W@ @-m > T o
The quotients in these inequalities are generalizations of the Rayleigh-Ritz ratios of
A and C. If f and g were linear, the left hand sides of these inequalities would be
equal to the maximum eigenvalue of A and the minimum eigenvalue of C.

3 AN EXAMPLE: COMPETITIVE NETWORK

The competitive or winner-take-all network is a classic example of an excitatory-
inhibitory network[8, 7]. Its population of excitatory neurons z; receives self-
feedback of strength a and recurrent feedback from a single inhibitory neuron y,

T +z = f(ui+oazi—y), (11)

Tty = Q(Z:c.-). (12)
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This is a special case of (1), with A =al, B=1, and C = 0.

The global inhibitory neuron mediates a competitive interaction between the exci-
tatory neurons. If the competition is very strong, a single excitatory neuron “wins,”
shutting off all the rest. If the competition is weak, more than one excitatory neuron
can win, usually those corresponding to the larger u;. Depending on the choice of f
and g, self-feedback a, and time scales 7, and 7, this network exhibits a variety of
dynamical behaviors, including a single point attractor, multiple point attractors,
and limit cycles[5, 7].

We will consider the specific case where f and g are the rectification nonlinearity
[z]* = max{z,0}. The behavior of this network will be described in detail elsewhere;
only a brief summary is given here. With either of two convenient choices for r,

r=7;'orr=a-7,",it can be shown that the resulting L is bounded below

for & < 2 and nonincreasing for @ < ;! 4+ 7,71, These are sufficient conditions for
the global stability of fixed points. They also turn out to be necessary conditions,
as it can be verified that the fixed points are locally unstable if the conditions are
violated. The behaviors in the parameter regime defined by these conditions can
be divided into two rough categories. For a < 1, there is a unique point attractor,
at which more than one excitatory neuron can be active, in a soft form of winner-
take-all. For a > 1, more than one point attractor may exist. Only one excitatory
neuron is active at each of these fixed points, a hard form of winner-take-all.

4 MINIMAX DYNAMICS

In the field of optimization, gradient descent-ascent is a standard method for finding
saddle points of an objective function. This section of the paper explains the close
relationship between gradient descent-ascent and excitatory-inhibitory networks[9,
10]. Furthermore, it reviews existing results on the convergence of gradient descent-
ascent to saddle points[13, 10], which are the precedents of the convergence proofs
of this paper.

The similarity of excitatory-inhibitory networks to gradient descent-ascent can be
seen by comparing the partial derivatives of the saddle function (6) to the velocities
z and g,

s

_5 = f_l(Ta,i"f'lU) —f_l(z) ~ TeT , (13)
65 wid . -1 .
B = 9 Ity - @~y (14)

The notation a ~ b means that the vectors a and b have the same signs, component
by component. Because f and g are monotonic nondecreasing functions, £ has the
same signs as —8S5/0z, while ¥ has the same signs as dS/8y. In other words, the
dynamics of the excitatory neurons tends to minimize S, while that of the inhibitory
neurons tends to maximize S.

If the sign relation ~ is replaced by equality in (13), we obtain a true gradient
descent-ascent dynamics,
as . 08

T = —— , Tyy=5;.

or

Sufficient conditions for convergence of gradient descent-ascent to saddle points
are known[13, 10]. The conditions can be derived using a Lyapunov function con-
structed from the kinetic energy and the saddle function,

1
L= %r._.[a:-[z +5mldl +7S . (16)

(15)
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The time derivative of L is given by

. 00?8 . .p0%S.

L= -Q‘:T@SU + yT-a?y
Weak sufficient conditions can be derived with the choice r = 0, so that L includes
only kinetic energy terms. Then L is obviously lower bounded by zero. Furthermore,
L is nonincreasing if 825/02? is positive definite for all y and 8%S/8y? is negative
definite for all . In this case, the existence of a unique saddle point is guaranteed,
as S is convex in z for all y, and concave in y for all z[13, 10].

—rri? + rryyz : 17)

If there is more than one saddle point, the kinetic energy by itself is generally not
a Lyapunov function. This is because the dynamics may pass through the vicinity
of more than one saddle point before it finally converges, so that the kinetic energy
behaves nonmonotonically as a function of time. In this situation, some appropriate
nonzero r must be found.

The Lyapunov function (7) for excitatory-inhibitory networks is a generalization
of the Lyapunov function (16) for gradient descent-ascent. This is analogous to
the way in which the Lyapunov function for symmetric networks generalizes the
potential function of gradient descent.

It should be noted that gradient descent-ascent is an unreliable way of finding a
saddle point. It is easy to construct situations in which it leads to a limit cycle.
The unreliability of gradient descent-ascent contrasts with the reliability of gradient
descent at finding local minimum of a potential function. Similarly, symmetric
networks converge to fixed points, but excitatory-inhibitory networks can converge
to limit cycles as well.

5 HAMILTONIAN DYNAMICS

The dynamics of an excitatory-inhibitory network can be written in a dissipative
Hamiltonian form. To do this, we define a phase space that is double the dimension
of the state space, adding momenta (p,, p,) that are canonically conjugate to (z,y).
The phase space dynamics

TL+2 = f('px) ) (18)

Tyy' +y = Q(Py) ) (19)

(r+%) (u+ Az —By—p;) = 0, (20)
(r+d£t) (v+BTz-Cy-p,) = 0, (21)

reduces to the state space dynamics (1) on the affine space A = {(pz,py,2,y) : pz =
u + Az — By,p, = v + BTz — Cy}. Provided that r > 0, the affine space A is an
attractive invariant manifold.

Defining the Hamiltonian

H(’P:;T:Py,y) = T;lQ@x,m) + T;lr(py! y) + TS(:B! y) ) (22)
the phase space dynamics (18) can be written as
5 0H
£ = .’ (23)
. O0H
y = ) (24)

opy
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Be = —om+ 45 By— (7 +0)lp — @] (25)
) d ) .

gy = —% + BTi - Cj - (r; = )lpy — 972 (v)] (26)

+2r(v+ BTz - Cy-p,) . (27)

On the invariant manifold A, the Hamiltonian is identical to the Lyapunov function
(7) defined previously.

The rate of éha.nge of the energy is given by
H = iTAi— (17" +1)iT[p — ()] (28)
~§7Cy = (1, = )37 [py — 97 ®)]
+2ryT(v+ BTz - Cy -p,) .
The last term vanishes on the invariant manifold, leaving a result identical to (8).
Therefore, if the noncanonical terms in the phase space dynamics (18) dissipate
energy, then the Hamiltonian is nonincreasing. It is also possible that the velocity-

dependent terms may pump energy into the system, rather than dissipate it, in
which case oscillations or chaotic behavior may arise.
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