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Abstract 

Our aim in this paper is to develop a Bayesian framework for match­
ing hierarchical relational models. The goal is to make discrete la­
bel assignments so as to optimise a global cost function that draws 
information concerning the consistency of match from different lev­
els of the hierarchy. Our Bayesian development naturally distin­
guishes between intra-level and inter-level constraints. This allows 
the impact of reassigning a match to be assessed not only at its 
own (or peer) level ofrepresentation, but also upon its parents and 
children in the hierarchy. 

1 Introd uction 
Hierarchical graphical structures are of critical importance in the interpretation of 
sensory or perceptual data. For instance, following the influential work of Marr [6] 
there has been sustained efforts at effectively organising and processing hierarchical 
information in vision systems. There are a plethora of concrete examples which in­
clude pyramidal hierarchies [3] that are concerned with multi-resolution information 
processing and conceptual hierarchies [4] which are concerned with processing at 
different levels of abstraction. Key to the development of techniques for hierarchical 
information processing is the desire to exploit not only the intra-level constraints 
applying at the individual levels of representation but also inter-level constraints 
operating between different levels of the hierarchy. If used effectively these inter­
level constraints can be brought to bear on the interpretation of uncertain image 
entities in such a way as to improve the fidelity of interpretation achieved by single 
level means. Viewed as an additional information source, inter-level constraints can 
be used to resolve ambiguities that would persist if single-level constraints alone 
were used. 
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In the connectionist literature graphical structures have been widely used to repre­
sent probabilistic causation in hierarchical systems [5, 9]. Although this literature 
has provided a powerful battery of techniques, they have proved to be of limited use 
in practical sensory processing systems. The main reason for this is that the under­
pinning independence assumptions and the resulting restrictions on graph topology 
are rarely realised in practice. In particular there are severe technical problems in 
dealing with structures that contain loops or are not tree-like. One way to overcome 
this difficulty is to edit intractable structures to produce tractable ones [8]. 

Our aim in this paper is to extend this discrete relaxation framework to hierarchi­
cal graphical structures. We develop a label-error process to model the violation of 
both inter-level and intra-level constraints. These two sets of constraints have dis­
tinct probability distributions. Because we are concerned with directly comparing 
the topology graphical structures rather than propagating causation, the result­
ing framework is not restricted by the topology of the hierarchy. In ,particular, 
we illustrate the effectiveness of the method on amoral graphs used to represent 
scene-structure in an image interpretation problem. This is a heterogeneous struc­
ture [2, 4] in which different label types and different classes of constraint operate 
at different levels of abstraction. This is to be contrasted with the more familiar 
pyramidal hierarchy which is effectively homogeneous [1, 3]. Since we are deal­
ing with discrete entities inter-level information communication is via a symbolic 
interpretation of the objects under consideration. 

2 Hierarchical Consistency 
The hierarchy consists of a number of levels, each containing objects which are 
fully described by their children at the level below. Formally each level is described 
by an attributed relational graph GI = (Vi, EI, Xl), Vi E L, with L being the 
index-set of levels in the hierarchy; the indices t and b are used to denote the 
top and bottom levels of the hierarchy respectively. According to our notation for 
level i of the hierarchy, Vi is the set of nodes, EI is the set of intra-level edges 
and Xl = {~~, Vu E Vi} is a set of unary attributes residing on the nodes. The 
children or descendents which form the representation of an element j at a lower 
level are denoted by V j . In other words, if U l - I is in Vj then there is a link in the 
hierarchy between element j at level i and element u at level i-I. According to 
our assumptions, the elements of Vj are drawn exclusively from Vi-I. The goal of 
performing relaxation operations is to find the match between scene graph G1 and 
model graph G2 • At each individual level of the hierarchy this match is represented 
by a mapping function p, Vi E L, where II: Vi -t Vi. 
The development of a hierarchical consistency measure proceeds along a similar 
line to the Single-level work of Wilson and Hancock [10]. The quantity of interest is 
the MAP estimate for the mapping function I given the available unary attributes, 
i.e. I = argmaxj P(jt, Vi E LIXI , Vi E L). We factorize the measurement infor­
mation over the set of nodes by application of Bayes rule under the assumption of 
measurement independence on the nodes. As a result 

P(/, Vi E L/Xl , Vi E L) = (Xl ~i E L) {II II p(X~ll(u))}P(fI, Vi E L) (1) 
p, IELuEVI 

The critical modelling ingredient in developing a discrete relaxation scheme from the 
above MAP criterion is the joint prior for the mapping function, i.e. p(fl, Vi E L) 
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which represents the influence of structural information on the matching process. 
The joint measurement density, p(XI, 'VI E L), on the other hand is a fixed property 
of the hierarchy and can be eliminated from further consideration. 

Raw perceptual information resides on the lowest level of the hierarchy. Our task 
is to propagate this information upwards through the hierarchy. To commence our 
development, we assume that individual levels are conditionally dependent only on 
the immediately adjacent descendant and ancestor levels. This assumption allows 
the factorisation of the joint probability in a manner analogous to a Markov chain 
[3]. Since we wish to draw information from the bottom upwards, the factorisa­
tion commences from the highest level of labelling. The expression for the joint 
probability of the hierarchical labelling is 

p(fl, 'VI E L) = p(fb) II P(fl+Ill) (2) 
IEL,I#t 

We can now focus our attention on the conditional probabilities P(fI+1lfl). These 
quantities express the probability of a labelling at the level I + 1 given the previously 
defined labelling at the descendant level l. We develop tractable expressions for 
these probabilities by decomposing the hierarchical graph into convenient structural 
units. Here we build on the idea of decomposing Single-level graphs into super­
cliques that was successfully exploited in our previous work [10]. Super-cliques are 
the sets of nodes connected to a centre-object by intra-level edges. However, in the 
hierarchical case the relational units are more complex since we must also consider 
the graph-structure conveyed by inter-level edges. 

We follow the philosophy adopted in the single-level case [10] by averaging the super­
clique probabilities to estimate the conditional matching probabilities P(fI+1lfl). 
If r~ C fl denotes the current match of the super-clique centred on the object 
j E ~l then we write 

P(f'lfl-I) = ~l L p(r~lfl-l) 
I I jEV' 

(3) 

In order to model this probability, we require a dictionary of constraint relations for 
the corresponding graph sub-units (super-cliques) from the model graph G2 • The 
allowed mappings between the model graph and the data graph which preserve the 
topology of the graph structure at a particular level of representation are referred 
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to as "structure preserving mappings" or SPM's. It is important to note that we 
need only explore those mappings which are topologically identical to the super­
clique centred on object j and therefore the possible mappings of the child nodes are 
heavily constrained by the mappings of their parents (Figure 1). We denote the set 
of SPM's by P. Since the set P is effectively the state-space of legal matching, we 
can apply the Bayes theorem to compute the conditional super-clique probability 
in the following manner 

p(r~I/I-l) = 2: p(r~15,/I-l)P(5Ii-l) (4) 
SEP 

According to this expression, there are two distinct components to our model. The 
first involves the comparison between our mapped realisation of the super-clique 
from graph G1 , i.e. q, with the selected unit from graph G2 and the mapping 
from level 1 - 1. Here we take the view that once we have hypothesised a particular 
mapping 5 from P, the mapping P-l provides us with no further information, i.e. 
p(r~ 15, /1-1) = p(r~ 15). The matched super-clique r~ is conditionally independent 
given a mapping from the set of SPM's and we may write the first term as p(r~15). 
In other words, this first conditional probability models only intra-level constraints. 
The second term is the significant one in evaluating the impact inter-level constraints 
on the labelling at the previous level. In this term the probability of the hypothesised 
mapping 5 is conditioned according to the match of the child levell. 

All that remains now is to evaluate the conditional probabilities. Under the as­
sumption of memoryless matching errors, the first term may be factorised over 
the marginal probabilities for the assigned matches lIon the individual nodes of 
the matched super-clique q given their counterparts Si belonging to the structure 
preserving mapping 5. In other words, 

p(r;15) = II P('~lsi) 
1'! Ef~ 

(5) 

In order to proceed we need to specify a probability distribution for the different 
matching possibilities. There are three cases. Firstly, the match Ii may be to a 
dummy-node d inserted into q to raise it to the same size as 5 so as to facilitate 
comparison. This process effectively models structural errors in the data-graph. 
The second and third cases, relate to whether the match is correct or in error. 
Assuming that dummy node insertions may be made with probability Ps and that 
matching errors occur with probability Pe , then we can write down the following 
distribution rule 

if Ii = d or Si = d 
'f 1 1 Ii = Si 

otherwise 
(6) 

The second term in Equation (5) is more subtle; it represents the conditional prob­
ability of the SPM 5 given a previously determined labelling at the level below. 
However, the mapping contains labels only from the current levell, not labels from 
level I - 1. We can reconcile this difference by noting that selection of a particular 
mapping at level I limits the number of consistent mappings allowed topologically 
at the level below. In other words if one node is mapped to another at level I, 
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the consistent interpretation is that the children of the nodes must match to each 
other. Provided that a set of mappings is available for the child-nodes, then this 
constraint can be used to model P(SljI-1). The required child-node mappings are 
referred to as "Hierarchy Preserving Mappings" or HPM's . It is these hierarchical 
mappings that lift the requirements for moralization in our matching scheme, since 
they effectively encode potentially incestuous vertical relations. We will denote the 
set of HPM's for the descendants of the SPM S as Qs and a member of this set as 
Q = {qi, 'Vi E Vj}. Using this model the conditional probability P(SIfI-l) is given 
by 

p(SIfI-1) = L P(SIQ,/I-1)P(Qll- 1 ) (7) 
QEQs 

Following our modelling of the intra-level probabilities, in this inter-level case as­
sume that S is conditionally independent of 11- 1 given Q, i.e. P(SIQ, / 1- 1) = 
P(SIQ)· 

Traditionally, dictionary based hierarchical schemes have operated by using a la­
belling determined at a preceding level to prune the dictionary set by elimination 
of vertically inconsistent items [4]. This approach can easily be incorporated into 
our scheme by setting P(QI/I-l) equal to unity for consistent items and to zero for 
those which are inconsistent. However we propose a different approach; by adopt­
ing the same kind of label distribution used in Equation 6 we can grade the SPM's 
according to their consistency with the match at level 1 - 1, i.e. jI-l. The model 
is developed by factorising over the child nodes qi E Q in the following manner 

P(Qll- 1 ) = II P(qih,!-1) (8) 
qiEQ 

The conditional probabilities are assigned by a re-application of the distribution 
rule given in Equation (6), i.e. 

if dummy node match 
'f 1-1 
1 qi = Ii (9) 
otherwise 

For the conditional probability of the SPM given the HPM Q, we adopt a simple 
uniform model under the assumption that all legitimate mappings are equivalent, 
i.e. P(SIQ) = P(S) = I~I' 
The various simplifications can be assembled along the lines outlined in [10] to 
develop a discrete update rule for matching the two hierarchical structures. The 
MAP update decision depends only on the label configurations residing on levels 
1 - 1, 1 and 1 + 1 together with the measurements residing on levell. Specifically, 
the level 1 matching configuration satisfies the condition 

II = argm!F{ II p(~~ljt(j)) }P(fI-llil )P(PI11+1 ) 

f jEV! 

(10) 

Here consistency of match between levels land 1 - 1 of the hierarchy is gauged by 
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the quantity 

PUl-llf l) = :1 L L K(rD exp 
1 iEVI SEP Qs 

1 

L K(r!-l) exp 
QEQs 
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[-(keH(rL S) + ks~(rL S))] 

[ - (keH (r~-l ,Q) + ks ~(r~-l, Q)) }11) 

In the above expression H (r j, S) is the "Hamming distance" which counts the num­
ber of label conflicts between the assigned match rj and the structure preserving 
mapping S. This quantity measures the consistency of the matched labels. The 
number of dummy nodes inserted into r j by the mapping S is denoted by ~ (r j, S). 
This second quantity measures the structural compatibility of the two hierarchical 
graphs. The exponential constants ke = In (l-PeMI-P,) and ks = In 1Ft, are re­
lated to the probabilities of structural errors and mis-assignment errors. Finally, 
K(rj) = (1- Pe ){1- Pe)lrjl is a normalisation constant. Finally, it is worth point­
ing out that the discrete relaxation scheme of Equation (10) can be applied at any 
level in the hierarchy. In other words the process can be operated in top-down or 
bottom-up modes if required. 

3 Matching SAR Data 
In our experimental evaluation of the discrete relaxation scheme we will focus on 
the matching of perceptual groupings of line-segments in radar images. Here the 
model graph is elicited from a digital map for the same area as the radar image. The 
line tokens extracted from the radar data correspond to hedges in the landscape. 
These are mapped as quadrilateral field boundaries in the cartographic model. To 
support this application, we develop a hierarchical matching scheme based on line­
segments and corner groupings. The method used to extract these features from 
the radar images is explained in detail in [10]. Straight line segments extracted 
from intensity ridges are organised into corner groupings. The intra-level graph 
is a constrained Delaunay triangulation of the line-segments. Inter-level relations 
represent the subsumption of the bottom-level line segments into corners. 

The raw image data used in this study is shown in Figure 2a. The extracted line­
segments are shown in Figure 2c. The map used for matching is shown in Figure 
2b. The experimental matching study is based on 95 linear segments in the SAR 
data and 30 segments contained in the map. However only 23 of the SAR segments 
have feasible matches within the map representation. Figure 2c shows the matches 
obtained by non-hierarchical means. The lines are coded as follows; the black lines 
are correct matches while the grey lines are matching errors. With the same coding 
scheme Figure 2d. shows the result obtained using the hierarchical method outlined 
in this paper. Comparing Figures 2c and 2d it is clear that the hierarchical method 
has been effective at grouping significant line structure and excluding clutter. To 
give some idea of relative performance merit, in the case of the non-hierarchical 
method, 20 of the 23 matchable segments are correctly identified with 75 incorrect 
matches. Application of the hierarchical method gives 19 correct matches, only 17 
residual clutter segments with 59 nodes correctly labelled as clutter. 

4 Concl usions 
We have developed graph matching technique which is tailored to hierarchical rela­
tional descriptions. The key element is this development is to quantify the match-
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Figure 2: Graph editing: a) Original image, b) Digital map, c) Non hierarchical 
match, d) Hierarchical match. 

ing consistency using the concept of hierarchy preserving mappings between two 
graphs. Central to the development of this novel technique is the idea of computing 
the probability of a particular node match by drawing on the topologically allowed 
mappings of the child nodes in the hierarchy. Results on image data with lines and 
corners as graph nodes reveal that the technique is capable of matching perceptual 
groupings under moderate levels of corruption. 
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