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Abstract 

We consider the general problem of learning multi-category classifi­
cation from labeled examples. We present experimental results for 
a nearest neighbor algorithm which actively selects samples from 
different pattern classes according to a querying rule instead of the 
a priori class probabilities. The amount of improvement of this 
query-based approach over the passive batch approach depends on 
the complexity of the Bayes rule. The principle on which this al­
gorithm is based is general enough to be used in any learning algo­
rithm which permits a model-selection criterion and for which the 
error rate of the classifier is calculable in terms of the complexity 
of the model. 

1 INTRODUCTION 

We consider the general problem of learning multi-category classification from la­
beled examples. In many practical learning settings the time or sample size available 
for training are limited. This may have adverse effects on the accuracy of the result­
ing classifier. For instance, in learning to recognize handwritten characters typical 
time limitation confines the training sample size to be of the order of a few hundred 
examples. It is important to make learning more efficient by obtaining only training 
data which contains significant information about the separability of the pattern 
classes thereby letting the learning algorithm participate actively in the sampling 
process. Querying for the class labels of specificly selected examples in the input 
space may lead to significant improvements in the generalization error (cf. Cohn, 
Atlas & Ladner, 1994, Cohn, 1996). However in learning pattern recognition this 
is not always useful or possible. In the handwritten recognition problem, the com­
puter could ask the user for labels of selected patterns generated by the computer 
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however labeling such patterns are not necessarily representative of his handwriting 
style but rather of his reading recognition ability. On the other hand it is possi­
ble to let the computer (learner) select particular pattern classes, not necessarily 
according to their a priori probabilities, and then obtain randomly drawn patterns 
according to the underlying unknown class-conditional probability distribution. We 
refer to such selective sampling as sample querying. Recent theory (cf. Ratsaby, 
1997) indicates that such freedom to select different classes at any time during the 
training stage is beneficial to the accuracy of the classifier learnt. In the current 
paper we report on experimental results for an incremental algorithm which utilizes 
this sample-querying procedure. 

2 THEORETICAL BACKGROUND 

We use the following setting: Given M distinct pattern classes each with a class 
conditional probability density fi (x), 1 ::; i ::; M, x E IR d, and a priori probabilities 
Pi, 1 ::; i ::; M. The functions fi (x), 1 ::; i ::; M, are assumed to be unknown while 
the Pi are assumed to be known or easily estimable as is the case oflearning character 
recognition. For a sample-size vector m = [m1' ... , mM] where L~1 mj = m denote 
by (m = {( x j , Yj ) } T= 1 a sample of labeled examples consisting of mi example from 
pattern class i where Yj, 1 ::; j ::; m, are chosen not necessarily at random from 
{I, 2 .... , M}, and the corresponding Xj are drawn at random i.i.d. according to the 
class conditional probability density fy) (x). The expected misclassification error of 
a classifier c is referred to as the loss of c and is denoted by L( c ). It is defined as the 
probability of miselassification of a randomly drawn x with respect to the underlying 
mixture probability density function f(x) = L~l pdi(X). The loss is commonly 
represented as L(c) = El{x :c(x);iy(x)}, where l{xEA} is the indicator function of a set 
A, expectation is taken with respect to the joint probability distribution fy (x )p(y) 
where p(y) is a discrete probability distribution taking values Pi over 1 ::; i ::; M, 
while y denotes the label of the class whose distribution fy(x) was used to draw x. 
The loss L(e) may also be written as L(e) = Lf!l PiEi1{c(x);ii} where Ei denotes 
expectation with respect to fi(X) . The pattern recognition problem is to learn based 
on em the optimal classifier, also known as the Bayes classifier, which by definition 
has minimum loss whkh we denote by L * . 

A multi-category classifier c is represented as a vector e(x) = [el(x), . .. , CM(X)] 
of boolean classifiers, where Ci (x) = 1 if e( x) = i, and Ci (x) = 0 otherwise, 1 ::; 
i ::; M. The loss L(e) of a multi-category classifier c may then be expressed as 
the average of the losses of its component classifiers, i.e., L(e) = L~l PiL(ei) 
where for a boolean classifier ei the loss is defined as L(ed = Ed{c.(x);il}' As 

an estimate of L(e) we define the empirical loss Lm(c} = L~l p;Lm.(e) where 
Lm,(c) = ~, Lj:Y1=i l{c(x);ii} which may also can be expressed as Lm,(ci) = 
~, Lj:YJ=i l{c.(x);il}' 

The family of all classifiers is assumed to be decomposed into a multi-structure 
5 = 51 X 52 X .. , X 5M , where 5j is a nested structure (cf. Vapnik, 1982) of 
boolean families Bk). ' ji = 1,2, ... , for 1 ::; i ::; M, i.e., 51 = Bkl , Bk 2 , •• • ,Bk)1 ' ... , 
52 = BkllBk2,···,Bk12'oo" up to 5M = Bk1 ,Bk2 ,· .. ,Bk)M'·'" where ki, E71+ 
denotes the VC-dimension of BkJ , and Bk1 , ~ Bk1,+I' 1 ::; i ::; M . For any fixed 

positive integer vector j E 7l ~ consider the class of vector classifiers 1ik(j) = 
Bk x Bk x· .. X Bk == 1ik where we take the liberty in dropping the multi-

11.l2 1M 

index j and write k instead of k(j) . Define by (h the subfamily of 1ik consisting 
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of classifiers C that are well-defined , i.e., ones whose components Ci, 1 S; i S; M 
satisfy Ut!I{X: Ci(X) = I} = IRd and {x : Ci(X) = l}n{x: Cj(x) = I} = 0, for 
1 S; i =1= j S; M . 

From the Vapnik-Chervonenkis theory (cf. Vapnik , 1982, Devroye, Gyorfi & Lu­
gosi , 1996) it follows that the loss of any boolean classifier Ci E Bk ], is , with 
high confidence, related to its empirical loss as L( Ci ) S Lm. (Ci) + f( m i, kj ,) where 
f(mi' kj ,) = const Jkj,ln mi!mi , 1 S; i S; M , where henceforth we denote by 
const any constant which does not depend on the relevant variables in the expres-
sion. Let the vectors m = [ml, "" mM] and k == k(j) = [kil , . ··, kjM] in 'lh~. 
Define f(m, k) = 2:f'!1 Pif(mi ,kj,) . It follows that the deviation between the em­
pirical loss and the loss is bounded uniformly over all multi-category classifiers in 
a class (}k by f(m, k) . We henceforth denote by ck the optimal classifier in (}k , i.e., 
ck = argmincE~h L( c) and Ck = argmincEQk Lm (c) is the empirical loss minimizer 
over the class (}k. 

The above implies that the classifier Ck has a loss which is no more than L( c~) + 
f(m, k) . Denote by k* the minimal complexity of a class (}k which contains the 
Bayes classifier. We refer to it as the Bayes complexity and henceforth assume 
k: < 00, 1 S; i S; M. If k* was known then based on a sample of size m with a 
sample size vector m = [ml , "" mM] a classifier Ck o whose loss is bounded from 
above by L * + f( m, k*) may be determined where L * = L( c~o) is the Bayes loss. 
This bound is minimal with respect to k by definition of k* and we refer to it as the 
minimal criterion. It can be further minimized by selecting a sample of size vector 
m* = argmin{ 'WM ."\,,,M __ }f(m,k*). This basically says that more examples 

mEaJ+ '6,=1 m,_m 
should be queried from pattern classes which require more complex discriminating 
rules within the Bayes classifier . Thus sample-querying via minimization of the 
minimal criterion makes learning more efficient through tuning the subsample sizes 
to the complexity of the Bayes classifier. However the Bayes classifier depends 
on the underlying probability distributions which in most interesting scenarios are 
unknown thus k* should be assumed unknown. In (Ratsaby, 1997) an incremental 
learning algorithm, based on Vapnik's structural risk minimization, generates a 
random complexity sequence ken) , corresponding to a sequence of empirical loss 
minimizers ck(n) over (}k(n), which converges to k* with increasing time n for learning 
problems with a zero Bayes loss. Based on this, a sample-query rule which achieves 
the same minimization is defined without the need to know k*. We briefly describe 
the main ideas next. 

At any time n, the criterion function is c(-, ken)) and is defined over the m-domain 
'lhtt· A gradient descent step of a fixed size is taken to minimize the current cri­
terion. After a step is taken , a new sample-size vector men + 1) is obtained and 
the difference m( n + 1) - m( n) dictates the sample-query at time n, namely, the 
increment in subsample size for each of the M pattern classes. With increasing n 
the vector sequence men) gets closer to an optimal path defined as the set which 
is comprised of the solutions to the minimization of f( m, k*) under all different 
constraints of 2:~1 mi = m, where m runs over the positive integers. Thus for 
all large n the sample-size vector m( n) is optimal in that it minimizes the minimal 
cri terion f(', k*) for the current total sample size m( n). This consti tutes the sample­
querying procedure of the learning algorithm. The remaining part does empirical 
loss minimization over the current class (}k(n) and outputs ck(n)" By assumption, 
since the Bayes classifier is contained in (}k o , it follows that for all large n, the loss 
L(ck(n» S; L* + min{mE~ :2::1 m,=m'(n)} f(m, k*), which is basically the minimal 

criterion mentioned above. Thus the algorithm produces a classifier ck(n) with a 
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minimal loss even when the Bayes complexity k* is unknown. 

In the next section we consider specific modf'l classes consisting of nearest-nf'ighbor 
classifiers on which we implement this incremental learning approach. 

3 INCREMENTAL NEAREST-NEIGHBOR 
ALGORITHM 

Fix and Hodges, cf. Silverman & Jones (1989). introduced the simple but powerful 
nearest-neighbor classifier which based on a labeled training sample {(Xj,yd}i!:I' 
Xi E m,d, Yi E {I, 2, ... , M}, when given a pattern x, it outputs the label Yj corre­
sponding to the example whose x j is closest to x. Every example in the training 
sample is used for this decision (we denote such an example as a prototype) thus 
the empirical loss is zero. The condensed nearest-neighbor algorithm (Hart, 1968) 
and the reduced nearest neighbor algorithm (G ates, 1972) are procedures which 
aim at reducing the number of prototypes while maintaining a zero empirical loss. 
Thus given a training sample of size m, after running either of these procedures, a 
nearest neighbor classifier having a zero empirical loss is generated based on s ~ m 
prototypes. Learning in this manner may be viewed as a form of empirical loss 
minimization with a complexity regularization component which puts a penalty 
proportional to the number of prototypes. 

A cell boundary ej,j of the voronoi diagram (cf. Preparata & Shamos, 1985) 
corresponding to a multi-category nearest-neighbor classifier c is defined as the 
(d - 1 )-dimensional perpendicular-bisector hyperplane <?f the line connecting the 
x-component of two prototypes Xi and Xj. For a fixed I E {1, ... ,M}, the collection 
of voronoi cell-boundaries based on pairs of prototypes of the form (xi,/), (Xj,q) 

where q =1= I, forms the boundary which separates the decision region labeled I from 
its complement and represents the boolean nearest-neighbor classifier CI. Denote 
by kl the number of suc.h cell-boundaries and denote by SI the number of proto­
types from a total of ml examples from pattern class t. The value of kl may be 
calculated directly from the knowledge of the SI prototypes, 1 ~ I ~ M, using 
various algorithms. The boolean classifier Cl is an element of an infinite class of 
boolean classifiers based on partitions of m,d by arrangements of kl hyperplanes of 
dimensionality d - 1 where each of the cells of a partition is labeled either 0 or 1. 
It follows, cf. Devroye et. al. (1996), that the loss of a multi-category nearest­
neighbor classifier C which consists of 81 prototypes out of ml examples, 1 ~ I ~ M, 
is bounded as L(c) ~ Lm(c) + f(m, k), where the a priori probabilities are taken as 

known, m = [mI, ... ,mM)' k = [k I , ... ,kM] and f(m,k) = E~lPlf(ml,kl)' where 
f( ml, kz) = const J « d + 1 )kl In ml + (ekd d)d) / mi . Letting k* denote the Bayes 
complexity then f(-, k*) represents the minimal criterion. 

The next algorithm uses the Condense and Reduce procedures in order to generate a 
sequence of classifiers ck(n) with a complexity vector k( n) which tends t.o k* as n --+ 

00. A sample-querying procedure referred to as Greedy Query (GQ) chooses at any 
time n to increment the single subsample of pattern class j*(n) where mjO(n) is the 

direction of maximum descent of the criterion f(', k( n)) at the current sample-size 
vector m( n). For the part of the algorithm which utilizes a Delaunay-Triangulation 
procedure we use the fast Fortune's algorithm (cf. 0 'Rourke) which can be used 
only for dimensionality d = 2. Since all we are interested is in counting Voronoi 
borders between all adjacent Voronoi cells then an efficient computation is possible 
also for dimensions d > 2 by resorting to linear programming for computing the 
adjacencies of facets of a polyhedron, d. Fukuda (1997). 
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Incremental Nearest Neighbor (INN) Algorithm 

Initialization: (Time n = 0) 
Let increment-size t::. be a fixed small positive integer. Start with m(O) = 
[e, . .. , e], where e is a small posit.ive integer. Draw (m(o) = {(m](o)}§";l where 

(m)(O ) consists of mJ(O) randomly drawn i.i.d. examples from pattern class j. 

While (number of available examples 2: t::.) Do: 

1. Call Procedure CR: chIn ) = CR«(m(n» . 

2. Call Procedure GQ: m(n + 1) = GQ(n). 

3. n:= n + 1. 

End While 
//Used up all examples . 
Output: NN-cIassifier ck(n). 

Procedure Condense-Reduce (CR) 
Input: Sample (m(n) stored in an array A[] of size m(n). 
Initialize: Make only the first example A[I] be a prototype. 
//Condense 
Do: 
ChangeOccl.lred := FALSE. 
For i= 1, . .. , m(n): 

• Classify A[i] based on available prototypes using the NN-Rule. 

• If not correct then 
- Let A[i] be a prototype. 
- ChangeOcel.lred:= TRUE. 

• End If 

End For 
While ( ChangeOecl.lred). 
//Reduce 
Do: 
ChangeOccl.lred := FALSE. 
For i = 1, ... . m(n): 

• If A[ i] is a prototype then classify it using the remaining prototypes by the 
NN-Rule. 

• If correct then 
- Make A[i] be not a prototype. 
- ChangeOccl.lred := TRUE. 

• End If 

End For 
While ( ChangeOec'Ured) . 

Run Delaunay-Triangulation Let k(n) = [k~, ... , kM ], k. denotes the number 
of Voronoi-cell boundaries associated with the s, prototypes. 
Return (NN-classifier with complexity vector k(n». 

Procedure Greedy-Query (GQ) 
Input: Time n. 

j*(n) := argmaxl~J~M I a!) f(m, k(n»1 
Im(n) 

Draw: t::. new i.i.d. examples from class j·(n). Denote them by ( . 
Update Sample: (m]·(n)(n+l) := Cn)·(n)Cn) U (, while (m,Cn+l) := (m,Cn), for 
1 :S i:;i: j·(n) :S M . 
Return: (m(n)+ t::. eJ.Cn», where eJ is an all zero vector except 1 at jth element. 
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3.1 EXPERIMENTAL RESULTS 

We ran algorithm INN on several two-dimensional (d = 2) multi-category classifi­
cation problems and compared its generalization error versus total sample size m 
with that of batch learning, the latter uses Procedure CR (but not Procedure GQ) 
with uniform subsample proportions, i.e., mi = ~, 1 ~ i ~ M. 

We ran three classification problems consisting of 4 equiprobable pattern classes 
with a zero Bayes loss. The generalization curves represent the average of 15 inde­
pendent learning runs of the empirical error on a fixed size test set. Each run (both 
for INN and Batch learning) consists of 80 independent experiments where each 
differs by 10 in the sample size used for training where the maximum sample size is 
800. We call an experiment a success if INN results in a lower generalization error 
than Batch. Let p be the probability of INN beating Batch. We wish to reject the 
hypothesis H that p = ~ which says that INN and Batch are approximately equal 
in performance. The results are displayed in Figure 1 as a series of pairs, the first 
picture showing the pattern classes of the specific problem while the second shows 
the learning curves for the two learning algorithms. Algorithm INN outperformed 
the simple Batch approach with a reject level of less than 1 %, the latter ignoring the 
inherent Bayes complexity and using an equal subsample size for each of the pattern 
classes. In contrast, the INN algorithm learns, incrementally over time, which of 
the classes are harder to separate and queries more from these pattern classes. 
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Figure 1. Three different Pattern Classification Problems and Learning 
Curves of the INN-Algorithm compared to Batch Learning. 
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