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Abstract 

If globally high dimensional data has locally only low dimensional distribu­
tions, it is advantageous to perform a local dimensionality reduction before 
further processing the data. In this paper we examine several techniques for 
local dimensionality reduction in the context of locally weighted linear re­
gression. As possible candidates, we derive local versions of factor analysis 
regression, principle component regression, principle component regression 
on joint distributions, and partial least squares regression. After outlining the 
statistical bases of these methods, we perform Monte Carlo simulations to 
evaluate their robustness with respect to violations of their statistical as­
sumptions. One surprising outcome is that locally weighted partial least 
squares regression offers the best average results, thus outperforming even 
factor analysis, the theoretically most appealing of our candidate techniques. 

1 INTRODUCTION 
Regression tasks involve mapping a n-dimensional continuous input vector x E ~n onto 
a m-dimensional output vector y E ~m • They form a ubiquitous class of problems found 
in fields including process control, sensorimotor control, coordinate transformations, and 
various stages of information processing in biological nervous systems. This paper will 
focus on spatially localized learning techniques, for example, kernel regression with 
Gaussian weighting functions. Local learning offer advantages for real-time incremental 
learning problems due to fast convergence, considerable robustness towards problems of 
negative interference, and large tolerance in model selection (Atkeson, Moore, & Schaal, 
1997; Schaal & Atkeson, in press). Local learning is usually based on interpolating data 
from a local neighborhood around the query point. For high dimensional learning prob­
lems, however, it suffers from a bias/variance dilemma, caused by the nonintuitive fact 
that " ... [in high dimensions] if neighborhoods are local, then they are almost surely 
empty, whereas if a neighborhood is not empty, then it is not local." (Scott, 1992, p.198). 
Global learning methods, such as sigmoidal feedforward networks, do not face this 
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problem as they do not employ neighborhood relations, although they require strong 
prior knowledge about the problem at hand in order to be successful. 

Assuming that local learning in high dimensions is a hopeless, however, is not necessar­
ily warranted: being globally high dimensional does not imply that data remains high di­
mensional if viewed locally. For example, in the control of robot anns and biological 
anns we have shown that for estimating the inverse dynamics of an ann, a globally 21-
dimensional space reduces on average to 4-6 dimensions locally (Vijayakumar & Schaal, 
1997). A local learning system that can robustly exploit such locally low dimensional 
distributions should be able to avoid the curse of dimensionality. 

In pursuit of the question of what, in the context of local regression, is the "right" 
method to perfonn local dimensionality reduction, this paper will derive and compare 
several candidate techniques under i) perfectly fulfilled statistical prerequisites (e.g., 
Gaussian noise, Gaussian input distributions, perfectly linear data), and ii) less perfect 
conditions (e.g., non-Gaussian distributions, slightly quadratic data, incorrect guess of 
the dimensionality of the true data distribution). We will focus on nonlinear function ap­
proximation with locally weighted linear regression (L WR), as it allows us to adapt a va­
riety of global linear dimensionality reduction techniques, and as L WR has found wide­
spread application in several local learning systems (Atkeson, Moore, & Schaal, 1997; 
Jordan & Jacobs, 1994; Xu, Jordan, & Hinton, 1996). In particular, we will derive and 
investigate locally weighted principal component regression (L WPCR), locally weighted 
joint data principal component analysis (L WPCA), locally weighted factor analysis 
(L WF A), and locally weighted partial least squares (L WPLS). Section 2 will briefly out­
line these methods and their theoretical foundations, while Section 3 will empirically 
evaluate the robustness of these methods using synthetic data sets that increasingly vio­
late some of the statistical assumptions of the techniques. 

2 METHODS OF DIMENSIONALITY REDUCTION 

We assume that our regression data originate from a generating process with two sets of 
observables, the "inputs" i and the "outputs" y. The characteristics of the process en­
sure a functional relation y = f(i). Both i and yare obtained through some measure­
ment device that adds independent mean zero noise of different magnitude in each ob­
servable, such that x == i + Ex and y = y + Ey • For the sake of simplicity, we will only fo­
cus on one-dimensional output data (m=l) and functions / that are either linear or 
slightly quadratic, as these cases are the most common in nonlinear function approxima­
tion with locally linear models. Locality of the regression is ensured by weighting the er­
ror of each data point with a weight from a Gaussian kernel: 

Wi = exp(-O.5(Xi - Xqf D(Xi - Xq)) (1) 

Xtt denotes the query point, and D a positive semi-definite distance metric which deter­
mmes the size and shape of the neighborhood contributing to the regression (Atkeson et 
aI., 1997). The parameters Xq and D can be determined in the framework of nonparamet­
ric statistics (Schaal & Atkeson, in press) or parametric maximum likelihood estimations 
(Xu et aI, 1995}- for the present study they are determined manually since their origin is 
secondary to the results of this paper. Without loss of generality, all our data sets will set 
!,q to the zero vector, compute the weights, and then translate the input data such that the 
locally weighted mean, i = L WI Xi / L Wi , is zero. The output data is equally translated to 
be mean zero. Mean zero data is necessary for most of techniques considered below. The 
(translated) input data is summarized in the rows of the matrix X, the corresponding 
(translated) outputs are the elements of the vector y, and the corresponding weights are in 
the diagonal matrix W. In some cases, we need the joint input and output data, denoted 
as Z=[X y). 
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2.1 FACTORANALYSIS(LWFA) 

Factor analysis (Everitt, 1984) is a technique of dimensionality reduction which is the 
most appropriate given the generating process of our regression data. It assumes the ob­
served data z was produced. by a mean zero independently distributed k -dimensional 
vector of factors v, transformed by the matrix U, and contaminated by mean zero inde­
pendent noise f: with diagonal covariance matrix Q: 

z=Uv+f:, where z=[xT,yt and f:=[f:~,t:yr (2) 

If both v and f: are normally distributed, the parameters Q and U can be obtained itera­
tively by the Expectation-Maximization algorithm (EM) (Rubin & Thayer, 1982). For a 
linear regression problem, one assumes that z was generated with U=[I, f3 Y and v = i, 
where f3 denotes the vector of regression coefficients of the linear model y = f31 x, and I 
the identity matrix. After calculating Q and U by EM in joint data space as formulated in 
(2), an estimate of f3 can be derived from the conditional probability p(y I x). As all 
distributions are assumed to be normal, the expected value ofy is the mean of this condi­
tional distribution. The locally weighted version (L WF A) of f3 can be obtained together 
with an estimate of the factors v from the joint weighted covariance matrix 'I' of z and v: 

E{[: ] + [ ~ } ~ ~,,~,;'x, where ~ ~ [ZT, VT~~Jft: w; ~ (3) 

[Q+UUT U] ['I'II(=n x n) 'I'12(=nX(m+k»)] 
= UT I = '¥21(= (m + k) x n) '1'22(= (m + k) x (m + k») 

where E { .} denotes the expectation operator and B a matrix of coefficients involved in 
estimating the factors v. Note that unless the noise f: is zero, the estimated f3 is different 
from the true f3 as it tries to average out the noise in the data. 

2.2 JOINT-SPACE PRINCIPAL COMPONENT ANALYSIS (LWPCA) 

An alternative way of determining the parameters f3 in a reduced space employs locally 
weighted principal component analysis (LWPCA) in the joint data space. By defining the . 
largest k+ 1 principal components of the weighted covariance matrix ofZ as U: 

U = [eigenvectors(I Wi (Zi - ZXZi - Z)T II Wi)] (4) 
max(l :k+1l 

and noting that the eigenvectors in U are unit length, the matrix inversion theorem (Hom 
& Johnson, 1994) provides a means to derive an efficient estimate of f3 

( T T( T )-1 T\ [Ux(=nXk)] 
f3=U x Uy -Uy UyUy -I UyUyt where U= Uy(=mxk) 

(5) 

In our one dimensional output case, U y is just a (1 x k) -dimensional row vector and the 
evaluation of (5) does not require a matrix inversion anymore but rather a division. 

If one assumes normal distributions in all variables as in L WF A, L WPCA is the special 
case of L WF A where the noise covariance Q is spherical, i.e., the same magnitude of 
noise in all observables. Under these circumstances, the subspaces spanned by U in both 
methods will be the same. However, the regression coefficients of L WPCA will be dif­
ferent from those of L WF A unless the noise level is zero, as L WF A optimizes the coeffi­
cients according to the noise in the data (Equation (3» . Thus, for normal distributions 
and a correct guess of k, L WPCA is always expected to perform worse than L WF A. 
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2.3 PARTIAL LEAST SQUARES (LWPLS, LWPLS_I) 

Partial least squares (Wold, 1975; Frank & Friedman, 1993) recursively computes or­
thogonal projections of the input data and performs single variable regressions along 
these projections on the residuals of the previous iteration step. A locally weighted ver­
sion of partial least squares (LWPLS) proceeds as shown in Equation (6) below. 

As all single variable regressions are ordinary uni­
variate least-squares minim izations, L WPLS 
makes the same statistical assumption as ordinary 
linear regressions, i.e., that only output variables 
have additive noise, but input variables are noise­
less. The choice of the projections u, however, in­
troduces an element in L WPLS that remains statis­
tically still debated (Frank & Friedman, 1993), al­
though, interestingly, there exists a strong similar­
ity with the way projections are chosen in Cascade 
Correlation (Fahlman & Lebiere, 1990). A peculi­
arity of L WPLS is that it also regresses the inputs 
of the previous step against the projected inputs s 
in order to ensure the orthogonality of all the pro­
jections u. Since L WPLS chooses projections in a 
very powerful way, it can accomplish optimal 
function fits with only one single projections (i.e., 

For Training: 

Initialize: 

Do = X, eo = y 
For i = 1 to k: 

For Lookup: 

Initialize: 

do = x, y= ° 
For i = 1 to k: 

s. = dT.u. 
I 1- I 

(6) 

k= 1) for certain input distributions. We will address this issue in our empirical evalua­
tions by comparing k-step L WPLS with I-step L WPLS, abbreviated L WPLS_I. 

2.4 PRINCIPAL COMPONENT REGRESSION (L WPCR) 

Although not optimal, a computationally efficient techniques of dimensionality reduction 
for linear regression is principal component regression (LWPCR) (Massy, 1965). The in­
puts are projected onto the largest k principal components of the weighted covariance 
matrix of the input data by the matrix U: 

U = [eigenvectors(2: Wi (Xi - xX Xi - xt /2: Wi )] (7) 
max(l:k) 

The regression coefficients f3 are thus calculated as: 

f3 = (UTXTwxUtUTXTWy (8) 

Equation (8) is inexpensive to evaluate since after projecting X with U, UTXTWXU be­
comes a diagonal matrix that is easy to invert. L WPCR assumes that the inputs have ad­
ditive spherical noise, which includes the zero noise case. As during dimensionality re­
duction L WPCR does not take into account the output data, it is endangered by clipping 
input dimensions with low variance which nevertheless have important contribution to 
the regression output. However, from a statistical point of view, it is less likely that low 
variance inputs have significant contribution in a linear regression, as the confidence 
bands of the regression coefficients increase inversely proportionally with the variance of 
the associated input. If the input data has non-spherical noise, L WPCR is prone to focus 
the regression on irrelevant projections. 

3 MONTE CARLO EVALUATIONS 

In order to evaluate the candidate methods, data sets with 5 inputs and 1 output were ran­
domly generated. Each data set consisted of 2,000 training points and 10,000 test points, 
distributed either uniformly or nonuniformly in the unit hypercube. The outputs were 
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generated by either a linear or quadratic function. Afterwards, the 5-dimensional input 
space was projected into a to-dimensional space by a randomly chosen distance pre­
serving linear transformation. Finally, Gaussian noise of various magnitudes was added 
to both the 10-dimensional inputs and one dimensional output. For the test sets, the addi­
tive noise in the outputs was omitted. Each regression technique was localized by a 
Gaussian kernel (Equation (1)) with a to-dimensional distance metric D=IO*I (D was 
manually chosen to ensure that the Gaussian kernel had sufficiently many data points and 
no "data holes" in the fringe areas of the kernel) . The precise experimental conditions 
followed closely those suggested by Frank and Friedman (1993): 

• 2 kinds of linear functions y = {g.I for: i) 131 .. = [I, I, I, I, If , ii) I3Ii. = [1,2,3,4,sf 

• 2 kinds of quadratic functions y = f3J.I + f3::.aAxt ,xi ,xi ,X;,X;]T for: 

i) 1311. = [I, I, I, I, Wand f3q.ad = 0.1 [I, I, I, I, If, and ii) 131 .. = [1,2,3,4, sf and f3quad = 0.1 [I, 4, 9, 16, 2sf 

• 3 kinds of noise conditions, each with 2 sub-conditions: 
i) only output noise: a) low noise: local signal/noise ratio Isnr=20, 

and b) high noise: Isnr=2, 
ii) equal noise in inputs and outputs: 

a) low noise Ex •• = Sy = N(O,O.Ot2), n e[I,2, ... ,10], 

and b) high noise Ex •• =sy=N(0,0.12),ne[I,2, ... ,10], 
iii) unequal noise in inputs and outputs: 

a) low noise : Ex .• = N(0,(0.0In)2), n e[I,2, . .. ,1O] and Isnr=20, 

and b) high noise: Ex .• = N(0,(0.0In)2), n e[I,2, ... ,1O] and Isnr=2, 

• 2 kinds of input distributions: i) uniform in unit hyper cube, ii) uniform in unit hyper cube excluding data 
points which activate a Gaussian weighting function (I) at c = [O.S,O,o,o,of with D=IO*I more than 
w=0.2 (this forms a "hyper kidney" shaped distribution) 

Every algorithm was run * 30 times on each of the 48 combinations of the conditions. 
Additionally, the complete test was repeated for three further conditions varying the di­
mensionality--called factors in accordance with L WF A-that the algorithms assumed to 
be the true dimensionality of the to-dimensional data from k=4 to 6, i.e., too few, correct, 
and too many factors. The average results are summarized in Figure I. 

Figure I a,b,c show the summary results of the three factor conditions. Besides averaging 
over the 30 trials per condition, each mean of these charts also averages over the two in­
put distribution conditions and the linear and quadratic function condition, as these four 
cases are frequently observed violations of the statistical assumptions in nonlinear func­
tion approximation with locally linear models. In Figure I b the number of factors equals 
the underlying dimensionality of the problem, and all algorithms are essentially per­
forming equally well. For perfectly Gaussian distributions in all random variables (not 
shown separately), LWFA's assumptions are perfectly fulfilled and it achieves the best 
results, however, almost indistinguishable closely followed by L WPLS. For the ''unequal 
noise condition", the two PCA based techniques, L WPCA and L WPCR, perform the 
worst since--as expected-they choose suboptimal projections. However, when violat­
ing the statistical assumptions, L WF A loses parts of its advantages, such that the sum­
mary results become fairly balanced in Figure lb. 

The quality of function fitting changes significantly when violating the correct number of 
factors, as illustrated in Figure I a,c. For too few factors (Figure la), L WPCR performs 
worst because it randomly omits one of the principle components in the input data, with­
out respect to how important it is for the regression. The second worse is L WF A: ac­
cording to its assumptions it believes that the signal it cannot model must be noise, lead­
ing to a degraded estimate of the data's subspace and, consequently, degraded regression 
results. L WPLS has a clear lead in this test, closely followed by L WPCA and L WPLS_I. 

* Except for LWFA, all methods can evaluate a data set in non-iterative calculations. LWFA was trained with EM for maxi­
mally 1000 iterations or until the log-likelihood increased less than I.e-lOin one iteration. 
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For too many factors than necessary (Figure Ie), it is now LWPCA which degrades. This 
effect is due to its extracting one very noise contaminated projection which strongly in­
fluences the recovery of the regression parameters in Equation (4). All other algorithms 
perform almost equally well, with L WF A and L WPLS taking a small lead. 
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e) RegressIon Results with 4 Factors 

• LWFA • LWPCA • LWPCR 0 LWPLS • LWPLS_1 

c) RegressIon Results with 6 Feclors 

d) Summery Results 

Figure I: Average summary results of Monte Carlo experiments. Each chart is primarily 
divided into the three major noise conditions, cf. headers in chart (a). In each noise con­
dition, there are four further subdivision: i) coefficients of linear or quadratic model are 
equal with low added noise; ii) like i) with high added noise; iii) coefficients oflinear or 
quadratic model are different with low noise added; iv) like iii) with high added noise. 

Refer to text and descriptions of Monte Carlo studies for further explanations. 
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4 SUMMARY AND CONCLUSIONS 

Figure 1 d summarizes all the Monte Carlo experiments in a final average plot. Except for 
L WPLS, every other technique showed at least one clear weakness in one of our "robust­
ness" tests. It was particularly an incorrect number of factors which made these weak­
nesses apparent. For high-dimensional regression problems, the local dimensionality, i.e., 
the number of factors, is not a clearly defined number but rather a varying quantity, de­
pending on the way the generating process operates. Usually, this process does not need 
to generate locally low dimensional distributions, however, it often "chooses" to do so, 
for instance, as human ann movements follow stereotypic patterns despite they could 
generate arbitrary ones. Thus, local dimensionality reduction needs to find autonomously 
the appropriate number of local factor. Locally weighted partial least squares turned out 
to be a surprisingly robust technique for this purpose, even outperforming the statistically 
appealing probabilistic factor analysis. As in principal component analysis, LWPLS's 
number of factors can easily be controlled just based on a variance-cutoff threshold in in­
put space (Frank & Friedman, 1993), while factor analysis usually requires expensive 
cross-validation techniques. Simple, variance-based control over the number of factors 
can actually improve the results of L WPCA and L WPCR in practice, since, as shown in 
Figure I a, L WPCR is more robust towards overestimating the number of factors, while 
L WPCA is more robust towards an underestimation. If one is interested in dynamically 
growing the number of factors while obtaining already good regression results with too 
few factors, L WPCA and, especially, L WPLS seem to be appropriate-it should be 
noted how well one factor L WPLS (L WPLS_l) already performed in Figure I! 

In conclusion, since locally weighted partial least squares was equally robust as local 
weighted factor analysis towards additive noise in. both input and output data, and, 
moreover, superior when mis-guessing the number of factors, it seems to be a most fa­
vorable technique for local dimensionality reduction for high dimensional regressions. 
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Abstract 

Dual-Route and Connectionist Single-Route models ofreading have 
been at odds over claims as to the correct explanation of the reading 
process. Recent Dual-Route models predict that subjects should 
show an increased naming latency for irregular words when the ir­
regularity is earlier in the word (e.g. chef is slower than glow) - a 
prediction that has been confirmed in human experiments. Since 
this would appear to be an effect of the left-to-right reading process, 
Coltheart & Rastle (1994) claim that Single-Route parallel connec­
tionist models cannot account for it. A refutation of this claim is 
presented here, consisting of network models which do show the 
interaction, along with orthographic neighborhood statistics that 
explain the effect. 

1 Introduction 

A major component of the task of learning to read is the development of a mapping 
from orthography to phonology. In a complete model of reading, message under­
standing must playa role, but many psycholinguistic phenomena can be explained 
in the context of this simple mapping task. A difficulty in learning this mapping 
is that in a language such as English, the mapping is quasiregular (Plaut et al., 
1996); there are a wide range of exceptions to the general rules. As with nearly 
all psychological phenomena, more frequent stimuli are processed faster, leading to 
shorter naming latencies. The regularity of mapping interacts with this variable, 
a robust finding that is well-explained by connectionist accounts (Seidenberg and 
M.cClelland, 1989; Taraban and McClelland, 1987). 

In this paper we consider a recent effect that seems difficult to account for in terms 
of the standard parallel network models. Coltheart & Rastle (1994) have shown 
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Position of Irregular Phoneme 
Filler 1 2 3 4 5 
Nonword 

Irregular 554 542 530 529 537 
Regular Control 502 516 518 523 525 
Difference 52 26 12 6 12 

Exception 
Irregular 545 524 528 526 528 
Regular Control 500 503 503 515 524 
Difference 45 21 25 11 4 
Avg. Difl'. 48.5 23.5 18.5 8.5 8 

Table 1: Naming Latency vs. Irregularity Position 

that the amount of delay experienced in naming an exception word is related to the 
phonemic position of the irregularity in pronunciation. Specifically, the earlier the 
exception occurs in the word, the longer the latency to the onset of pronouncing 
the word. Table 1, adapted from (Coltheart and Rastle, 1994) shows the response 
latencies to two-syllable words by normal subjects. There is a clear left-to-right 
ranking of the latencies compared to controls in the last row of the Table. Coltheart 
et al. claim this delay ranking cannot be achieved by standard connectionist models. 
This paper shows this claim to be false, and shows that the origin of the effect lies in 
a statistical regularity of English, related to the number of "friends" and "enemies" 
of the pronunciation within the word's neighborhood 1. 

2 Background 

Computational modeling of the reading task has been approached from a number 
of different perspectives. Advocates of a dual-route model of oral reading claim 
that two separate routes, one lexical (a lexicon, often hypothesized to be an asso­
ciative network) and one rule-based, are required to account for certain phenomena 
in reaction times and nonword pronunciation seen in human subjects (Coltheart 
et al., 1993). Connectionist modelers claim that the same phenomena can be cap­
tured in a single-route model which learns simply by exposure to a representative 
dataset (Seidenberg and McClelland, 1989). 

In the Dual-Route Cascade model (DRC) (Coltheart et al., 1993), the lexical route 
is implemented as an Interactive Activation (McClelland and Rumelhart, 1981) 
system, while the non-lexical route is implemented by a set of grapheme-phoneme 
correspondence (GPC) rules learned from a dataset. Input at the letter identifica­
tion layer is activated in a left-to-right sequential fashion to simulate the reading 
direction of English, and fed simultaneously to the two pathways in the model. 
Activation from both the GPC route and the lexicon route then begins to interact 
at the output (phoneme) level, starting with the phonemes at the beginning of the 
word. If the GPC and the lexicon agree on pronunciation, the correct phonemes 
will be activated quickly. For words with irregular pronunciation, the lexicon and 
GPC routes will activate different phonemes: the GPC route will try to activate 
the regular pronunciation while the lexical route will activate the irregular (correct) 

1 Friends are words with the same pronunciations for the ambiguous letter-ta-sound 
correspondence; enemies are words with different pronunciations. 
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pronunciation. Inhibitory links between alternate phoneme pronunciations will slow 
down the rise in activation, causing words with inconsistencies to be pronounced 
more slowly than regular words. This slowing will not occur, however, when an 
irregularity appears late in a word. This is because in the model the lexical node 
spreads activation to all of a word's phonemes as soon as it becomes active. If an 
irregularity is late in a word, the correct pronunciation will begin to be activated 
before the GPC route is able to vote against it. Hence late irregularities will not be 
as affected by conflicting information. This result is validated by simulations with 
the one-syllable DRC model (Coltheart and Rastle, 1994). 

Several connectionist systems have been developed to model the orthography to 
phonology process (Seidenberg and McClelland, 1989; Plaut et al., 1996). These 
connectionist models provide evidence that the task, with accompanying phenom­
ena, can be learned through a single mechanism. In particular, Plaut et al. (hence­
forth PMSP) develop a recurrent network which duplicates the naming latencies 
appropriate to their data set, consisting of approximately 3000 one-syllable En­
glish words (monosyllabic words with frequency greater than 1 in the Kucera & 
Francis corpus (Kucera and Francis, 1967». Naming latencies are computed based 
on time-t~settle for the recurrent network, and based on MSE for a feed-forward 
model used in some simulations. In addition to duplicating frequency and regularity 
interactions displayed in previous human studies, this model also performs appr~ 
priately in providing pronunciation of pronounceable nonwords. This provides an 
improvement over, and a validation of, previous work with a strictly feed-forward 
network (Seidenberg and McClelland, 1989). However, to date, no one has shown 
that Coltheart's naming latency by irregularity of position interaction can be ac­
counted for by such a model. Indeed, it is difficult to see how such a model could 
account for such a phenomenon, as its explanation (at least in the DRC model) 
seems to require the serial, left-t~right nature of processing in the model, whereas 
networks such as PMSP present the word orthography all at once. In the following, 
we fill this gap in the literature, and explain why a parallel, feed-forward model can 
account for this result. 

3 Experiments & Results 

3.1 The Data 

Pronunciations for approximately 100,000 English words were obtained through an 
electronic dictionary developed by CMU 2 . The provided format was not amenable 
to an automated method for distinguishing the number of syllables in the word. To 
obtain syllable counts, English tw~syllable words were gathered from the Medical 
Research Council (MRC) Psycholinguistic Database (Coltheart and Rastle, 1994), 
which is conveniently annotated with syllable counts and frequency (only those with 
Kucera-Francis written frequency of one or greater were selected). Intersecting the 
two databases resulted in 5,924 tw~syllable words. There is some noise in the data; 
ZONED and AERIAL, for example, are in this database of purported tw~syllable 
words. Due to the size of the database and time limitations, we did not prune the 
data of these errors, nor did we eliminate proper nouns or foreign words. Single­
syllable words with the same frequency criterion were also selected for comparison 
with previous work. 3,284 unique single-syllable words were obtained, in contrast 
to 2,998 words used by PMSP. Similar noisy data as in the tw~syllable set exists 
in this database. Each word was represented using the orthography and phonology 
representation scheme outlined by PMSP. 

2 Available via ftp://ftp.cs.cmu.edu/project/fgdata/dict/ 



62 

1.0 

S 0.8 

I 0.6 

"" it. 

J 0.4 
>::' ... 
Ii 
r!I 02 

1. C. Milostan and G. W Cottrell 

Figure 1: I-syllable network latency differences & neighborhood statistics 

3.2 Methods 

For the single syllable words, we used an identical network to the feed-forward net­
work used by PMSP, i.e., a 105-100-61 network, and for the two syllable words, we 
simply used the same architecture with the each layer size doubled. We trained each 
network for 300 epochs, using batch training with a cross entropy objective function, 
an initial learning rate of 0.001, momentum of 0.9 after the first 10 epochs, weight 
decay of 0.0001, and delta-bar-delta learning rate adjustment. Training exemplars 
were weighted by the log of frequency as found in the Kucera-Francis corpus. Af­
ter this training, the single syllable feed-forward networks averaged 98.6% correct 
outputs, using the same evaluation technique outlined in PMSP. Two syllable net­
works were trained for 1700 epochs using online training, a learning rate of 0.05, 
momentum of 0.9 after the first 10 epochs, and raw frequency weighting. The two 
syllable network achieved 85% correct. Naming latency was equated with network 
output MSE; for successful results, the error difference between the irregular words 
and associated control words should decrease with irregularity position. 

3.3 Results 

Single Syllable Words First, Coltheart's challenge that a single-route model 
cannot produce the latency effects was explored. The single-syllable network de­
scribed above was tested on the collection of single-syllable words identified as irreg­
ular by (Taraban and McClelland, 1987). In (Coltheart and Rastle, 1994), control 
words are selected based on equal number of letters, same beginning phoneme, and 
Kucera-Francis frequency between 1 and 20 (controls were not frequency matched). 
For single syllable words used here, the control condition was modified to allow 
frequency from 1 to 70, which is the range of the "low frequency" exception words 
in the Taraban & McClelland set. Controls were chosen by drawing randomly from 
the words meeting the control criteria. 

Each test and control word input vector was presented to the network, and the 
MSE at the output layer (compared to the expected correct target) was calculated. 
From these values, the differences in MSE for target and matched control words 
were calculated and are shown in Figure 1. Note that words with an irregularity 
in the first phoneme position have the largest difference from their control words, 
with this (exception - regular control) difference decreasing as phoneme position 
increases. Contrary to the claims of the Dual-Route model, this network does show 
the desired rank-ordering of MSE/latency. 
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Two Syllable Words Testing of the two-syllable network is identical to that 
of the one-syllable network. The difference in MSE for each test word and its 
corresponding control is calculated, averaging across all test pairs in the position 
set. Both test words and their controls are those found in (Coltheart and Rastle, 
1994). The 2-syllable network appears to produce approximately the correct linear 
trend in the naming MSE/latency (Figure 2), although the results displayed are not 
monotonically decreasing with position. Note, however, that the results presented 
by Coltheart, when taken separately, also fail to exhibit this trend (Table 1). For 
correct analysis, several "subject" networks should be trained, with formal linear 
trend analysis then performed with the resulting data. These further simulations 
are currently being undertaken. 

4 Why the network works: Neighborhood effects 

A possible explanation for these results relies on the fact that connectionist networks 
tend to extract statistical regularities in the data, and are affected by regularity by 
frequency interactions. In this case, we decided to explore the hypothesis that 
the results could be explained by a neighborhood effect: Perhaps the number of 
"friends" and "enemies" in the neighborhood (in a sense to be defined below) of 
the exception word varies in English in a position-dependent way. If there are more 
enemies (different pronunciations) than friends (identical pronunciations) when the 
exception occurs at the beginning of a word than at the end, then one would expect 
a network to reflect this statistical regularity in its output errors. In particular, one 
would expect higher errors (and therefore longer latencies in naming) if the word 
has a higher proportion of enemies in the neighborhood. 

To test this hypothesis, we created some data search engines to collect word neigh­
borhoods based on various criteria. There is no consensus on the exact definition 
of the "neighborhood" of a word. There are some common measures, however, so 
we explored several of these. Taraban & McClelland (1987) neighborhoods (T&M) 
are defined as words containing the same vowel grouping and final consonant clus­
ter. These neighborhoods therefore tend to consist of words that rhyme (MUST, 
DUST, TRUST). There is independent evidence that these word-body neighbors 
are psychologically relevant for word naming tasks (i.e., pronunciation) (Treiman 
and Chafetz, 1987). The neighborhood measure given by Coltheart (Coltheart and 
Rastle, 1994), N, counts same-length words which differ by only one letter, tak­
ing string position into account. Finally, edit-distance-1 (ED1) neighborhoods are 
those words which can be generated from the target word by making one change 
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(Peereman, 1995): either a letter substitution, insertion or deletion. This differs 
from the Coltheart N definition in that "TRUST" is in the EDI neighborhood (but 
not the N neighborhood) of "RUST" , and provides a neighborhood measure which 
considers both pronunciation and spelling similarity. However, the N and the ED-l 
measure have not been shown to be psychologically real in terms of affecting naming 
latency (Treiman and Chafetz, 1987). 

We therefore extended T&M neighborhoods to multi-syllable words. Each vowel 
group is considered within the context of its rime, with each syllable considered 
separately. Consonant neighborhoods consist of orthographic clusters which cor­
respond to the same location in the word. This results in 4 consonant cluster 
locations: first syllable onset, first syllable coda, second syllable onset, and second 
syllable coda. Consonant cluster neighborhoods include the preceeding vowel for 
coda consonants, and the following vowel for onset consonants. 

The notion of exception words is also not universally agreed upon. Precisely which 
words are exceptions is a function of the working definition of pronunciation and 
regularity for the experiment at hand. Given a definition of neighborhood, then, 
exception words can be defined as those words which do not agree with the phono­
logical mapping favored by the majority of items in that particular neighborhood. 
Alternatively, in cases assuming a set of rules for grapheme-phoneme correspon­
dence, exception words are those which violate the rules which define thp majority 
of pronunciations. For this investigation, single syllable exception words are those 
defined as exception by the T&M neighborhood definition. For instance, PINT 
would be considered an exception word compared to its neighbors MINT, TINT, 
HINT, etc. Coltheart, on the other hand, defines exception words to be those for 
which his G PC rules produce incorrect pronunciation. Since we are concerned with 
addressing Coltheart's claims, these 2-syllable exception words will also be used 
here. 

4.1 Results 

Single syllable words For each phoneme position, we compare each word with 
irregularity at that position with its neighbors, counting the number of enemies 
(words with alternate pronunciation at the supposed irregularity) and friends (words 
with pronunciation in agreement) that it has. The T &M neighborhood numbers 
(words containing the same vowel grouping and final consonant cluster) used in Fig­
ure 1 are found in (Taraban and McClelland, 1987). For each word , we calculate its 
(enemy) / (friend+enemy) ratio; these ratios are then averaged over all the words in 
the position set. The results using neighborhoods as defined in Taraban & McClel­
land clearly show the desired rank ordering of effect. First-position-irregularity 
words have more "enemies" and fewer "friends" than third-position-irregularity 
words, with the second-position words falling in the middle as desired. We sug­
gest that this statistical regularity in the data is what the above networks capture. 

However convincing these results may be, they do not fully address Coltheart's 
data, which is for two syllable words of five phonemes or phoneme clusters, with 
irregularities at each of five possible positions. Also, due to the size of the T&M 
data set, there are only 2 members in the position I set, and the single-syllable data 
only goes up to phoneme position 3. The neighborhoods for the two-syllable data 
set were thus examined. 

Two syllable results Recall that the two-syllable test words are those used in 
the (Coltheart and Rastle, 1994) subject study, for which naming latency differ­
ences are shown in Table 1. CoItheart's I-letter-different neighborhood definition 
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is not very informative in this case, since by this criterion most of the target words 
provided in (Coltheart and Rastle, 1994) are loners (i.e., have no neighbors at 
all). However, using a neighborhood based on T&M-2 recreates the desired ranking 
(Figure 2) as indicated by the ratio of hindering pronunciations to the total of the 
helping and hindering pronunciations. As with the single syllable words, each test 
word is compared with its neighbor words and the (enemy)/(friend+enemy) ratio is 
calculated. Averaging over the words in each position set, we again see that words 
with early irregularities are at a support disadvantage compared to words with late 
irregularities. 

5 Summary 

Dual-Route models claim the irregularity position effect can only be accounted 
for by two-route models with left-to-right activation of phonemes, and interaction 
between GPC rules and the lexicon. The work presented in this paper refutes this 
claim by presenting results from feed-forward connectionist networks which show the 
same rank ordering of latency. Further, an analysis of orthographic neighborhoods 
shows why the networks can do this: the effect is based on a statistical interaction 
between friend/enemy support and position. Words with irregular orthographic­
phonemic correspondence at word beginning have less support from their neighbors 
than words with later irregularities; it is this difference which explains the latency 
results. The resulting statistical regularity is then easily captured by connectionist 
networks exposed to representative data sets. 
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