Learning Generative Models with the
Up-Propagation Algorithm

Jong-Hoon Oh and H. Sebastian Seung
Bell Labs, Lucent Technologies
Murray Hill, NJ 07974
{jhoh|seung}@bell-labs.com

Abstract

Up-propagation is an algorithm for inverting and learning neural network
generative models. Sensory input is processed by inverting a model that
generates patterns from hidden variables using top-down connections.
The inversion process is iterative, utilizing a negative feedback loop that
depends on an error signal propagated by bottom-up connections. The
error signal is also used to learn the generative model from examples.
The algorithm is benchmarked against principal component analysis in
experiments on images of handwritten digits.

In his doctrine of unconscious inference, Helmholtz argued that perceptions are
formed by the interaction of bottom-up sensory data with top-down expectations.
According to one interpretation of this doctrine, perception is a procedure of sequen-
tial hypothesis testing. We propose a new algorithm, called up-propagation, that
realizes this interpretation in layered neural networks. It uses top-down connections
to generate hypotheses, and bottom-up connections to revise them.

It is important to understand the difference between up-propagation and its an-
cestor, the backpropagation algorithm[1]. Backpropagation is a learning algorithm
for recognition models. As shown in Figure la, bottom-up connections recognize
patterns, while top-down connections propagate an error signal that is used to learn
the recognition model.

In contrast, up-propagation is an algorithm for inverting and learning generative
models, as shown in Figure 1b. Top-down connections generate patterns from a
set of hidden variables. Sensory input is processed by inverting the generative
model, recovering hidden variables that could have generated the sensory data.
This operation is called either pattern recognition or pattern analysis, depending
on the meaning of the hidden variables. Inversion of the generative model is done
iteratively, through a negative feedback loop driven by an error signal from the
bottom-up connections. The error signal is also used for learning the connections

error recognition generation error

(a) (b)

Figure 1: Bottom-up and top-down processing in neural networks. (a) Backprop
network (b) Up-prop network

in the generative model.

Up-propagation can be regarded as a generalization of principal component analysis
(PCA) and its variants like Conic[2] to nonlinear, multilayer generative models. Our
experiments with images of handwritten digits demonstrate that up-propagation
learns a global, nonlinear model of a pattern manifold. With its global parametriza-
tion, this model is distinct from locally linear models of pattern manifolds|3].

1 INVERTING THE GENERATIVE MODEL

The generative model is a network of L + 1 layers of neurons, with layer 0 at the
bottom and layer L at the top. The vectors z;, t = 0...L, are the activations of
the layers. The pattern z is generated from the hidden variables z, by a top-down
pass through the network,

Tt—1 :f(tht)a t:L)"'al . (1)

The nonlinear function f acts on vectors component by component. The matrix
W, contains the synaptic connections from the neurons in layer ¢ to the neurons in
layer t — 1. A bias term b;_; can be added to the argument of f, but is omitted
here. It is convenient to define auxiliary variables #; by x; = f(Z:). In terms of
these auxiliary variables, the top-down pass is written as

Ty = Wi f(@) (2)

Given a sensory input d, the top-down generative model can be inverted by finding
hidden variables x; that generate a pattern xy matching d. If some of the hid-
den variables represent the identity of the pattern, the inversion operation is called
recognition. Alternatively, the hidden variables may just be a more compact repre-
sentation of the pattern, in which case the operation is called analysis or encoding.
The inversion is done iteratively, as described below.

In the following, the operator * denotes elementwise multiplication of two vectors,
so that z = x * y means z; = x;y; for all ©. The bottom-up pass starts with the
mismatch between the sensory data d and the generated pattern z,

do = f'(#0) * (d — o) , (3)
which is propagated upwards by
8¢ = f'(&¢) * (W 0-1) - (4)

When the error signal reaches the top of the network, it is used to update the hidden
variables zp,
Az o WLT(SL_l . (5)

This update closes the negative feedback loop. Then a new pattern zq is generated
by a top-down pass (1), and the process starts over again.

This iterative inversion process performs gradient descent on the cost function %|d —
xo|?, subject to the constraints (1). This can be proved using the chain rule, as in
the traditional derivation of the backprop algorithm. Another method of proof is
to add the equations (1) as constraints, using Lagrange multipliers,

L
Sl = o) + 32 6l ey — Wf ()] ()

t=1

This derivation has the advantage that the bottom-up activations é; have an inter-
pretation as Lagrange multipliers.

Inverting the generative model by negative feedback can be interpreted as a process
of sequential hypothesis testing. The top-down connections generate a hypothesis
about the sensory data. The bottom-up connections propagate an error signal
that is the disagreement between the hypothesis and data. When the error signal
reaches the top, it is used to generate a revised hypothesis, and the generate-test-
revise cycle starts all over again. Perception is the convergence of this feedback loop
to the hypothesis that is most consistent with the data.

2 LEARNING THE GENERATIVE MODEL

The synaptic weights W; determine the types of patterns that the network is able to
generate. To learn from examples, the weights are adjusted to improve the network’s
generation ability. A suitable cost function for learning is the reconstruction error
$|d — mo|* averaged over an ensemble of examples. Online gradient descent with
respect to the synaptic weights is performed by a learning rule of the form

AWt X (5t,11’tT . (7)

The same error signal § that was used to invert the generative model is also used
to learn it.

The batch form of the optimization is compactly written using matrix notation.

To do this, we define the matrices D, Xy, ..., X1 whose columns are the vectors d,
Zg,...,rr corresponding to examples in the training set. Then computation and
learning are the minimization of
1
min =|D — Xo|? 8
min 21D~ Xof? ®)

subject to the constraint that
thlzf(WtXt)> t:]-)"'vL' (9)

In other words, up-prop is a dual minimization with respect to hidden variables and
synaptic connections. Computation minimizes with respect to the hidden variables
X1, and learning minimizes with respect to the synaptic weight matrices W;.

From the geometric viewpoint, up-propagation is an algorithm for learning pattern
manifolds. The top-down pass (1) maps an nj-dimensional vector zj to an ng-
dimensional vector zy. Thus the generative model parametrizes a continuous np-
dimensional manifold embedded in ng-dimensional space. Inverting the generative
model is equivalent to finding the point on the manifold that is closest to the sensory
data. Learning the generative model is equivalent to deforming the manifold to fit
a database of examples.

principal components

Figure 2: One-step generation of handwritten digits. Weights of the 256-9 up-prop
network (left) versus the top 9 principal components (right)

targetimage x0 t=0 t=10 t=100 t=1000
4 4 4 4 4
2 2 2 2 H 2 H HH
0 0 Ona 100 0 uﬂrﬂﬂﬂ o) mﬂﬂﬂu 0 - HHU

0o 5 100 5 100 5 100 5 100 5 10

Figure 3: Iterative inversion of a generative model as sequential hypothesis testing.
A fully trained 256-9 network is inverted to generate an approximation to a target
image that was not previously seen during training. The stepsize of the dynamics
was fixed to 0.02 to show time evolution of the system.

Pattern manifolds are relevant when patterns vary continuously. For example, the
variations in the image of a three-dimensional object produced by changes of view-
point are clearly continuous, and can be described by the action of a transformation
group on a prototype pattern. Other types of variation, such as deformations in
the shape of the object, are also continuous, even though they may not be readily
describable in terms of transformation groups. Continuous variability is clearly not
confined to visual images, but is present in many other domains. Many existing
techniques for modeling pattern manifolds, such as PCA or PCA mixtures[3], de-
pend on linear or locally linear approximations to the manifold. Up-prop constructs
a globally parametrized, nonlinear manifold.

3 ONE-STEP GENERATION

The simplest generative model of the form (1) has just one step (L = 1). Up-
propagation minimizes the cost function

min —|D — f(W1 X . 10

Join | FWVixy))? (10)
For a linear f this reduces to PCA, as the cost function is minimized when the vec-
tors in the weight matrix W, span the same space as the top principal components
of the data D.

Up-propagation with a one-step generative model was applied to the USPS
database[4], which consists of example images of handwritten digits. Each of the
7291 training and 2007 testing images was normalized to a 16 x 16 grid with pixel
intensities in the range [0, 1]. A separate model was trained for each digit class. The
nonlinearity f was the logistic function. Batch optimization of (10) was done by

Reconstruction Error
0.025 T T T

PCA, training
Up-prop, training
PCA, test
Up-prop, test

<o x 0
oo xo

0.021-

0.015

Error

0.005

L L L
25 30 35 40

5 20
number of vectors

0 L L L
5 10 1

Figure 4: Reconstruction error for 256—n networks as a function of n. The error of
PCA with n principal components is shown for comparison. The up-prop network
performs better on both the training set and test set.

gradient descent with adaptive stepsize control by the Armijo rule[5]. In most cases,
the stepsize varied between 10~ and 103, and the optimization usually converged
within 10 epochs. Figure 2 shows the weights of a 256-9 network that was trained
on 731 different images of the digit “two.” Each of the 9 subimages is the weight
vector of a top-level neuron. The top 9 principal components are also shown for
comparison.

Figure 3 shows the time evolution of a fully trained 2569 network during iterative
inversion. The error signal from the bottom layer zy quickly activates the top layer
1. At early times, all the top layer neurons have similar activation levels. However,
the neurons with weight vectors more relevant to the target image become dominant
soon, and the other neurons are deactivated.

The reconstruction error (10) of the up-prop network was much better than that of
PCA. We trained 10 different up-prop networks, one for each digit, and these were
compared with 10 corresponding PCA models. Figure 4 shows the average squared
error per pixel that resulted. A 256-12 up-prop network performed as well as PCA
with 36 principal components.

4 TWO-STEP GENERATION

Two-step generation is a richer model, and is learned using the cost function

1
i D= [(Wa X)) (11)
Note that a nonlinear f is necessary for two-step generation to have more represen-
tational power than one-step generation. When this two-step generative model was
trained on the USPS database, the weight vectors in W7 learned features resembling
principal components. The activities of the X7 neurons tended to be close to their
saturated values of one or zero.

The reconstruction error of the two-step generative network was compared to that of
the one-step generative network with the same number of neurons in the top layer.

Our 256-25-9 network outperformed our 2569 network on the test set, though
both networks used nine hidden variables to encode the sensory data. However,
the learning time was much longer, and iterative inversion was also slow. While
up-prop for one-step generation converged within several hundred epochs, up-prop
for two-step generation often needed several thousand epochs or more to converge.
We often found long plateaus in the learning curves, which may be due to the
permutation symmetry of the network architecture[6].

5 DISCUSSION

To summarize the experiments discussed above, we constructed separate generative
models, one for each digit class. Relative to PCA, each generative model was
superior at encoding digits from its corresponding class. This enhanced generative
ability was due to the use of nonlinearity.

We also tried to use these generative models for recognition. A test digit was
classified by inverting all the generative models, and then choosing the one best able
to generate the digit. Our tests of this recognition method were not encouraging.
The nonlinearity of up-propagation tended to improve the generation ability of
models corresponding to all classes, not just the model corresponding to the correct
classification of the digit. Therefore the improved encoding performance did not
immediately transfer to improved recognition.

We have not tried the experiment of training one generative model on all the digits,
with some of the hidden variables representing the digit class. In this case, pattern
recognition could be done by inverting a single generative model. It remains to be
seen whether this method will work.

Iterative inversion was surprisingly fast, as shown in Figure 3, and gave solutions
of surprisingly good quality in spite of potential problems with local minima, as
shown in Figure 4. In spite of these virtues, iterative inversion is still a problematic
method. We do not know whether it will perform well if a single generative model
is trained on multiple pattern classes. Furthermore, it seems a rather indirect way
of doing pattern recognition.

The up-prop generative model is deterministic, which handicaps its modeling of
pattern variability. The model can be dressed up in probabilistic language by defin-
ing a prior distribution P(zr) for the hidden variables, and adding Gaussian noise
to xo to generate the sensory data. However, this probabilistic appearance is only
skin deep, as the sequence of transformations from zj, to xg is still completely de-
terministic. In a truly probabilistic model, like a belief network, every layer of the
generation process adds variability.

In conclusion, we briefly compare up-propagation to other algorithms and architec-
tures.

1. In backpropagation[1], only the recognition model is explicit. Iterative gra-
dient descent methods can be used to invert the recognition model, though
this implicit generative model generally appears to be inaccurate[7, §].

2. Up-propagation has an explicit generative model, and recognition is done
by inverting the generative model. The accuracy of this implicit recognition
model has not yet been tested empirically. Iterative inversion of generative
models has also been proposed for linear networks[2, 9] and probabilistic
belief networks[10].

3. In the autoencoder[11] and the Helmholtz machine[12], there are separate

models of recognition and generation, both explicit. Recognition uses only
bottom-up connections, and generation uses only top-down connections.
Neither process is iterative. Both processes can operate completely inde-
pendently; they only interact during learning.

4. In attractor neural networks[13, 14] and the Boltzmann machine[15], recog-
nition and generation are performed by the same recurrent network. Each
process is iterative, and each utilizes both bottom-up and top-down connec-
tions. Computation in these networks is chiefly based on positive, rather
than negative feedback.

Backprop and up-prop suffer from a lack of balance in their treatment of bottom-up
and top-down processing. The autoencoder and the Helmholtz machine suffer from
inability to use iterative dynamics for computation. Attractor neural networks lack
these deficiencies, so there is incentive to solve the problem of learning attractors[14].

This work was supported by Bell Laboratories. JHO was partly supported by the
Research Professorship of the LG-Yonam Foundation. We are grateful to Dan Lee
for helpful discussions.

References

[1]

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations
by back-propagating errors. Nature, 323:533-536, 1986.

D. D. Lee and H. S. Seung. Unsupervised learning by convex and conic coding. Adv.
Neural Info. Proc. Syst., 9:515-521, 1997.

G. E. Hinton, P. Dayan, and M. Revow. Modeling the manifolds of images of hand-
written digits. IEEE Trans. Neural Networks, 8:65-74, 1997.

Y. LeCun et al. Learning algorithms for classification: a comparison on handwritten
digit recognition. In J.-H. Oh, C. Kwon, and S. Cho, editors, Neural networks: the
statistical mechanics perspective, pages 261-276, Singapore, 1995. World Scientific.
D. P. Bertsekas. Nonlinear programming. Athena Scientific, Belmont, MA, 1995.

K. Kang, J.-H. Oh, C. Kwon, and Y. Park. Generalization in a two-layer neural
network. Phys. Rev., E48:4805-4809, 1993.

J. Kindermann and A. Linden. Inversion of neural networks by gradient descent.
Parallel Computing, 14:277-286, 1990.

Y. Lee. Handwritten digit recognition using K nearest-neighbor, radial-basis function,
and backpropagation neural networks. Neural Comput., 3:441-449, 1991.

R. P. N. Rao and D. H. Ballard. Dynamic model of visual recognition predicts neural
response properties in the visual cortex. Neural Comput., 9:721-63, 1997.

L. K. Saul, T. Jaakkola, and M. I. Jordan. Mean field theory for sigmoid belief
networks. J. Artif. Intell. Res., 4:61-76, 1996.

G. W. Cottrell, P. Munro, and D. Zipser. Image compression by back propagation: an
example of extensional programming. In N. E. Sharkey, editor, Models of cognition:
a review of cognitive science. Ablex, Norwood, NJ, 1989.

G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal. The “wake-sleep” algorithm for
unsupervised neural networks. Science, 268:1158-1161, 1995.

H. S. Seung. Pattern analysis and synthesis in attractor neural networks. In K.-Y. M.
Wong, I. King, and D.-Y. Yeung, editors, Theoretical Aspects of Neural Computation:
A Multidisciplinary Perspective, Singapore, 1997. Springer-Verlag.

H. S. Seung. Learning continuous attractors in recurrent networks. Adv. Neural Info.
Proc. Syst., 11, 1998.

D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning algorithm for Boltzmann
machines. Cognitive Science, 9:147-169, 1985.

