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Abstract 

Given a set of objects in the visual field, how does the the visual system learn 
to attend to a particular object of interest while ignoring the rest? How are 
occlusions and background clutter so effortlessly discounted for when rec­
ognizing a familiar object? In this paper, we attempt to answer these ques­
tions in the context of a Kalman filter-based model of visual recognition that 
has previously proved useful in explaining certain neurophysiological phe­
nomena such as endstopping and related extra-classical receptive field ef­
fects in the visual cortex. By using results from the field of robust statistics, 
we describe an extension of the Kalman filter model that can handle multiple 
objects in the visual field. The resulting robust Kalman filter model demon­
strates how certain forms of attention can be viewed as an emergent prop­
erty of the interaction between top-down expectations and bottom-up sig­
nals. The model also suggests functional interpretations of certain attention­
related effects that have been observed in visual cortical neurons. Exper­
imental results are provided to help demonstrate the ability of the model 
to perform robust segmentation and recognition of objects and image se­
quences in the presence of varying degrees of occlusions and clutter. 

1 INTRODUCTION 

The human visual system possesses the remarkable ability to recognize objects despite the 
presence of distractors and occluders in the field of view. A popular suggestion is that an "at­
tentional spotlight" mediates this ability to preferentially process a relevant object in a given 
scene (see [5, 9] for reviews). Numerous models have been proposed to simulate the control of 
this .. focus of attention" [10, 11, 15]. Unfortunately, there is inconclusive evidence for the ex­
istence of an explicit neural mechanism for implementing an attentional spotlight in the visual 
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cortex. Thus, an important question is whether there are alternate neural mechanisms which 
don't explicitly use a spotlight but whose effects can nevertheless be interpreted as attention. 
In other words, can attention be viewed as an emergent property of a distributed network of 
neurons whose primary goal is visual recognition? 

In this paper, we extend a previously proposed Kalman filter-based model of visual recognition 
[13, 12] to handle the case of multiple objects, occlusions, and clutter in the visual field. We 
provide simulation results suggesting that certain forms of attention can be viewed as an emer­
gent property of the interaction between bottom-up signals and top-down expectations during 
visual recognition. The simulation results demonstrate how "attention" can be switched be­
tween different objects in a visual scene without using an explicit spotlight of attention. 

2 A KALMAN FILTER MODEL OF VISUAL RECOGNITION 

We have previously introduced a hierarchical Kalman filter-based model of visual recognition 
and have shown how this model can be used to explain neurophysiological effects such as end­
stopping and neural response suppression during free-viewing of natural images [ 12, 13 ]. The 
Kalman filter [7] is essentially a linear dynamical system that attempts to mimic the behavior 
of an observed natural process. At any time instant t, the filter assumes that the internal state 
of the given natural process can be represented as a k x 1 vector r( t). Although not directly 
accessible, this internal state vector is assumed to generate ann x 1 measurable and observable 
output vector I( t) (for example, an image) according to: 

I(t) = Ur(t) + n(t) (1) 

where U is ann x k generative (or measurement) matrix, and n(t) is a Gaussian stochastic 
noise process with mean zero and a covariance matrix given by E = E[nilT] (E denotes the 
expectation operator and T denotes transpose). 

In order to specify how the internal state r changes with time, the Kalman filter assumes that 
the process of interest can be modeled as a Gauss-Markov random process [1]. Thus, given 
the state r(t- 1) at time instant t- 1, the next state r(t) is given by: 

r(t) = Vr(t- 1) + m(t- 1) (2) 

where Vis the state transition (or prediction) matrix and m is white Gaussian noise with mean 
m = E[m] and covariance II= E[(m- m)(m- m)T]. 

Given the generative model in Equation 1 and the dynamics in Equation 2, the goal is to op­
timally estimate the current internal state r( t) using only the measurable inputs I( t). An op­
timization function whose minimization yields an estimate of r is the weighted least-squares 
criterion: 

J = (I- Ur)TE-1 (I- Ur) + (r- rf M-1(r- r) (3) 

where r( t) is the mean of the state vector before measurement of the input data I( t) and M = 
E[(r - r)(r - r)T] is the corresponding covariance matrix. It is easy to show [1] that J is 
simply the sum of the negative log-likelihood of generating the data I given the stater, and 
the negative log of the prior probability of the stater. Thus, minimizing J is equivalent to 
maximizing the posterior probability p(rji) of the stater given the input data. 

The optimization function J can be minimized by setting ~J = 0 and solving for the minimum 
valuer of the stater (note thatr equals the mean ofr afte~ measurement of I). The resultant 
Kalman .filter equation is given by: · 

r(t) = r(t) + N(t)UTE(t)-1 (I(t)- Ur(t)) (4) 

r(t) = W(t- 1) + m(t- 1) (5) 

where N(t) = (UTE(t)-1U + M(t)-1 )-1 is a "normalization" matrix that maintains the 
covariance of the stater after measurement ofl. The matrix M, which is the covariance before 
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measurement of I, is updated as M ( t) = V N ( t - 1) VT +II ( t - 1). Thus, the Kalman filter 
predicts one step into the future using Equation 5, obtains the next sensory input I( t), and then 
co~ects its Jj.rediction r(9 u~ing the sensory resi~ual e~or (I(t) --: Ur(t)) a~d ~e Kalman 
gam N(t)U ~(t)-1 • This yields the corrected est1mate r(t) (Equation 4), wh1ch IS then used 
to make the next state predictionf(t + 1). 

The measurement (or generative) matrix U and the state transition (or prediction) matrix V 
used by the Kalman filter together encode an internal nwdel of the observed dynamic pro­
cess. As suggested in [13], it is possible to learn an internal model of the input dynamics 
from observed data. Let u and v denote the vectorized forms of the matrices U and V re­
spectively. For exam,fle, the n ~ k generative matrix U can be collapsed into an nk x 1 vector 
u = [U1U2 ••. un] where U' denotes the ith row of U. Note that (I- Ur) = (I- Ru) 
where R is then x nk matrix given by: 

= [ r; r~ ~ l R . . . . . . 
0 0 rT 

(6) 

By minimizing an optimization function similar to J [13], one can derive a Kalman filter-like 
.. learning rule" for the generative matrix U: 

u(t) = ii(t) + Nu(t)R(t)T~(t)-1 (I(t)- R(t)ii(t))- aNu(t)ii(t) (7) 

where ii(t) = u(t- 1), Nu(t) = (Nu(t- 1)-1 + R(t)T~(t)-1 R(t) + ai)-1 , and I is the 
nk x nk identity matrix. The constant a determines the decay rate of ii. 

As in the case of U, an estimate of the prediction matrix V can be obtained via the following 
learning rule for v [13]: 

v(t) = v(t) + Nv(t)R(tf M(t)-1 [r(t + 1)- r(t + 1)]- f3Nv(t)v(t) (8) 

wherev(t) = v(t-1), Nv(t) = (Nv(t-1)-1 +R(t)T M(t)-1R(t)+f3I)-1 andRisak X k2 

matrix analogous to R (Equation 6) but with rT = rr. The constant /3 determines the decay 
rate for v while I denotes the k2 x k2 identity matrix. Note that in this case, the estimate ofV is 
corrected using the prediction residual error ( r( t + 1) - r( t + 1)), which denotes the difference 
between the actual state and the predicted state. One unresolved issue is the specification of 
values for r(t) (comprising R(t)) in Equation 7 and r(t + 1) in Equation 8. The Expectation­
Maximization (EM) algorithm [4] suggests that in the case of static stimuli (f(t) = r(t -
1)), one may use r(t) = r which is the converged optimal state estimate for the given static 
input. In the case of dynamic stimuli, the EM algorithm prescribes r( t) = r( tl N), which is 
the optimal temporally snwothed state estimate [1] for timet (5 N), given input data for each 
of the time instants 1, ... , N. Unfortunately, the smoothed estimate requires knowledge of 
future inputs and is computationally quite expensive. For the experimental results, we used 
the on-line estimates r(t) when updating the matrices u and v during training. 

3 ROBUST KALMAN FILTERING 

The standard derivation of the Kalman filter minimizes Equation 3 but unfortunately does not 
specify how the covariance ~ is to be obtained. A common choice is to use a constant matrix 
or even a constant scalar. Making ~ constant however reduces the Kalman filter estimates to 
standard least-squares estimates,· which are highly susceptible to outliers or gross errors i.e. 
data points that lie far away from the bulk of the observed or predicted data [ 6]. For example, 
in the case where I represents an input image, occlusions and clutter will cause many pixels in 
I to deviate significantly from corresponding pixels in the predicted image Ur. The problem 



Correlates of AJtention in a Model of Dynamic Visual Recognition 83 

Gating Feedforward 
Matrix - Matrix 

Sensory G uT Robust 
Residual Kalman Filter 
I- ltd Estimate 

Nonnalization " 
Prediction -

Inhibition r0 r Matrix ~ 
Input I - N v 

Itd=Ur Feedback 

Matrix 
Top-Down Prediction u Predicted State r 

of Ex ted n ut pee I p 

Figure 1: Recurrent Network Implementation of the Robust Kalman Filter. The gating matrix G is 
a non-linear function of the current residual error between the input I and its top-down prediction ur. G 
effectively filters out any high residuals, thereby preventing outliers in input data I from influencing the 
robust Kalman filter estimate r. Note that the entire filter can be implemented in a recurrent neural net­
work, with U, UT, and V represented by the synaptic weights of neurons with linear activation functions 
and G being implemented by a set of threshold non-linear neurons with binary outputs. 

of outliers can be tackled using robust estimation procedures [6] such as M-estimation, which 
involves minimizing a function of the form: 

n 

(9) 
i=1 

where Ii and Ui are the ith pixel and ith row of I and U respectively, and p is a function that 
increases less rapidly than the square. This reduces the influence oflarge residual errors (which 
correspond to outliers) on the optimization of J', thereby "rejecting" the outliers. A special 
case of the above function is the following weighted least squares criterion: 

J' =(I-:- Urf S(I- Ur) (10) 
where Sis a diagonal matrix whose diagonal entries Si,i determine the weight accorded to the 
corresponding pixel error (Ii - Uir). A simple but attractive choice for these weights is the 
non-linear function given by Si,i =min {1, c/(Ii- Uir)2}, wherecisa threshold parameter. 
To understand the behavior of this function, note that S effectively clips the ith summand in 
J' (Equation 10 above) to a constant value c whenever the ith squared residual (Ii - Uir? 
exceeds the threshold c; otherwise, the summand is set equal to the squared residual. 

By substituting E-1 = Sin the optimization function J (Equation 3), we can rederive the 
following robust Kalman filter equation: 

r(t) = r(t) + N(t)UTG(t)(I- Ur(t)) (11) 
where r(t) = W(t- 1)) + iii(t- 1), N(t) = (UTG(t)U + M(t)-1)-1 , M(t) = V N(t-
1)VT + II(t -1), and G(t) is ann x n diagonal matrix whose diagonal entries at time instant 
t are given by: 

Gi,i _ { 0 if (Ii(t) - Uir(t))2 > c(t) 
- 1 otherwise 

G can be regarded as the sensory residual gain or "gating" matrix, which determines the (bi­
nary) gain on the various components of the incoming sensory residual error vector. By effec­
tively filtering out any high residuals, G allows the Kalman filter to ignore the corresponding 
outliers in the input I, thereby enabling it to robustly estimate the stater. Figure 1 depicts an 
implementation of the robust Kalman filter in the form of a recurrent network of linear and 
threshold non-linear neurons. In particular, the feedforward, feedback and prediction neurons 
possess linear activation functions while the gating neurons implementing G compute binary 
outputs based on a threshold non-linearity. 
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Figure 2: Correlates of Attention during Static Recognition. (a) Images of size 105 x 65 used to train 
a robust Kalman filter network. The generative matrix U was 6825 x 5. (b) Occlusions and background 
clutter are treated as outliers (white regions in the third image, depicting the diagonal of the gating matrix 
G). This allows the network to "attend to" and recognize the training object, as indicated by the accurate 
reconstruction (middle image) of the training image based on the final robust state estimate. (c) In the 
more interesting case of the training objects occluding each other, the network converges to one of the 
objects (the "dominant" one in the image - in this case, the object in the foreground). Having recognized 
one object, the second object is attended to and recognized by taking the complement of the outliers ( di­
agonal of G) and repeating the robust filtering process (third and fourth images). The fifth image is the 
image reconstruction obtained from the standard (least squares derived) Kalman filter estimate, showing 
an inability to resolve or recognize either of the two objects. 

4 VISUAL ATIENTION IN A SIMULATED NETWORK 

The gating matrix G allows the Kalman filter network to "selectively attend .. to an object while 
treating the remaining components of the sensory input as outliers. We demonstrate this capa­
bility of the network using three different examples. In the first example, a network was trained 
on static grayscale images of a pair of 3D objects (Figure 2 (a)}. For learning static inputs, the 
prediction matrix Vis unnecessary since we may use r(t) = r(t -1) and M(t) = N(t -1). 
After training, the network was tested on images containing the training objects with varying 
degrees of occlusion and clutter (Figure 2 (b) and (c)). The outlier threshold c was initialized 
to the sum of the mean plus k standard deviations of the current distribution of squared residual 
errors (Ii - Uir )2 • The value of k was gradually decreased during each iteration in order to 
allow the network to refine its robust estimate by gradually pruning away the outliers as it con­
verges to a single object estimate. After convergence, the diagonal of the matrix G contains 
zeros in the image locations containing the outliers and ones in the remaining locations. As 
shown in Figure 2 (b), the network was successful in recognizing the training object despite 
occlusion and background clutter. 

More interestingly, the outliers (white) produce a crude segmentation of the occluder and back­
ground clutter, which can subsequently .be used to focus "attention" on these previously ig­
nored objects and recover their identity. In particular, an outlier mask m can be defined by 
taking the complement of the diagonal of G (i.e. m i = 1-Gi,i). By replacing the diagonal of 
G with m in Equation tt 1 and repeating the estimation process, the network can "attend to" 

1 Although not implemented here, this "shifting of attentional focus" can be automated using a model 
of neuronal fatigue and active decay (see, for example, [3)). 
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Figure 3: Correlates of Attention during Dynamic Recognition. (a) A network was trained on a cyclic 
image sequence of gestures (top), each image of size 75 x 75, with U and V of size 5625 x 15 and 15 x 15 
respectively. The panels below show how the network can ignore various fonns of occlusion and clutter 
(outliers}, "attending to" the sequence of gestures that it has been trained on. The outlier threshold c 
was computed as the mean plus 0.3 standard deviati9ns of the current distribution of squared residual 
errors. Results shown are those obtained after 5 cycles of exposure to the occluded images. (b) Three 
image sequences used to train a network. (c) and (d) show the response of the network to ambiguous 
stimuli comprised of images containing both a horizontal and a vertical bar. Note that the network was 
trained on a horizontal bar moving downwards and·a vertical bar moving rightwards (see (b)) but not both 
simultaneously. Given ambiguous stimuli containing both these stimuli, the network interprets the input 
differently depending on the initial "priming" input. When the initial input is a vertical bar as in (c), the 
network interprets the sequence as a vertical bar moving rightwards (with some minor artifacts due to 
the other training sequences). On the other hand, when the initial input is a horizontal bar as in (d), the 
sequence is interpreted as a horizontal bar moving downwards, not paying "attention" to the extraneous 
vertical bars, which are now treated as outliers. 

the image region(s) that were previously ignored as outliers. Such a two-step serial recogni­
tion process is depicted in Figure 2 (c). The network first recognizes the "doniinant" object, 
which was generally observed to be the object occupying a larger area of the input image or 
possessing regions with higher contrast.· The outlier mask m is subsequently used for "switch­
ing attention" and extracting the identity of the second object (lower arrow). Figure 3 shows 
examples of attention during recognition of dynamic stimuli. In particular, Figure 3 (c) and 
(d) show how the same image sequence can be interpreted in two different ways depending on 
which part of the stimulus is "attended to," which in tum depends on the initial priming input. 

5 CONCLUSIONS 

The simulation results indicate that certain· experimental observations that have previously 
been interpreted using the metaphor of an attentional spotlight can also arise as a result of com­
petition and cooperation during visual recognition within networks of linear and non-linear 
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neurons. Although not explicitly designed to simulate attention, the robust Kalman filter net­
works nevertheless display some of the essential characteristics of visual attention, such as 
the preferential processing of a subset of the input signals and the consequent "switching" of 
attention to previously ignored stimuli. Given multiple objects or conflicting stimuli in their 
receptive fields (Figures 2 and 3), the responses of the feedforward, .feedback, and prediction 
neurons in the simulated network were modulated according to the current object being "at­
tended to." The modulation in responses was mediated by the non-linear gating neurons G, 
taking into account both bottom-up signals as well top-down feedback signals. This suggests a 
network-level interpretation of similar forms of attentional response modulation in the primate 
visual cortex [2, 8, 14], with the consequent prediction that the genesis of attentional modula­
tion in such cases may not necessarily lie within the recorded neurons themselves but within 
the distributed circuitry that these neurons are an integral part of. 
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