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Abstract 

This paper is concerned with the problem of Reinforcement Learn
ing (RL) for continuous state space and time stocha.stic control 
problems. We state the Harnilton-Jacobi-Bellman equation satis
fied by the value function and use a Finite-Difference method for 
designing a convergent approximation scheme. Then we propose a 
RL algorithm based on this scheme and prove its convergence to 
the optimal solution. 

1 Introduction to RL in the continuous, stochastic case 

The objective of RL is to find -thanks to a reinforcement signal- an optimal strategy 
for solving a dynamical control problem. Here we sudy the continuous time, con
tinuous state-space stochastic case, which covers a wide variety of control problems 
including target, viability, optimization problems (see [FS93], [KP95])}or which a 
formalism is the following. The evolution of the current state x(t) E 0 (the state
space, with 0 open subset of IRd ), depends on the control u(t) E U (compact subset) 
by a stochastic differential equation, called the state dynamics: 

dx = f(x(t), u(t))dt + a(x(t), u(t))dw (1) 
where f is the local drift and a .dw (with w a brownian motion of dimension rand 
(j a d x r-matrix) the stochastic part (which appears for several reasons such as lake 
of precision, noisy influence, random fluctuations) of the diffusion process. 

For initial state x and control u(t), (1) leads to an infinity of possible traj~tories 
x(t). For some trajectory x(t) (see figure I)., let T be its exit time from 0 (with 
the convention that if x(t) always stays in 0, then T = 00). Then, we define the 
functional J of initial state x and control u(.) as the expectation for all trajectories 
of the discounted cumulative reinforcement : 

J(x; u(.)) = Ex,u( .) {loT '/r(x(t), u(t))dt +,,{ R(X(T))} 
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where rex, u) is the running reinforcement and R(x) the boundary reinforcement. 
'Y is the discount factor (0 :S 'Y < 1). In the following, we assume that J, a are of 
class C2 , rand Rare Lipschitzian (with constants Lr and LR) and the boundary 
80 is C2 . 
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Figure 1: The state space, the discretized ~6 (the square dots) and its frontier 8~6 
(the round ones). A trajectory Xk(t) goes through the neighbourhood of state ~. 

RL uses the method of Dynamic Program~ing (DP) which generates an optimal 
(feed-back) control u*(x) by estimating the value function (VF), defined as the 
maximal value of the functional J as a function of initial state x : 

Vex) = sup J(x; u(.). 
u( .) 

(2) 

In the RL approach, the state dynamics is unknown from the system ; the only 
available information for learning the optimal control is the reinforcement obtained 
at the current state. Here we propose a model-based algorithm, i.e. that learns 
on-line a model of the dynamics and approximates the value function by successive 
iterations. 

Section 2 states the Hamilton-Jacobi-Bellman equation and use a Finite-Difference 
(FD) method derived from Kushner [Kus90] for generating a convergent approxi
mation scheme. In section 3, we propose a RL algorithm based on this scheme and 
prove its convergence to the VF in appendix A. 

2 A Finite Difference scheme 

Here, we state a second-order nonlinear differential equation (obtained from the DP 
principle, see [FS93J) satisfied by the value function, called the Hamilton-Jacobi
Bellman equation. 

Let the d x d matrix a = a.a' (with' the transpose of the matrix). We consider 
the uniformly pambolic case, Le. we assume that there exists c > 0 such that 
V$ E 0, Vu E U, Vy E IRd ,2:t,j=l aij(x, U)YiYj 2: c1lY112. Then V is C2 (see [Kry80J). 
Let Vx be the gradient of V and VXiXj its second-order partial derivatives. 

Theorem 1 (Hamilton-Jacohi-Bellman) The following HJB equation holds : 

Vex) In 'Y + sup [rex, u) + Vx(x).J(x, u) + ! 2:~j=l aij VXiXj (x)] = 0 for x E 0 
uEU 

Besides, V satisfies the following boundary condition: Vex) = R(x) for x E 80. 
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Remark 1 The challenge of learning the VF is motivated by the fact that from V, 
we can deduce the following optimal feed-back control policy: 

u*(x) E arg sup [r(x, u) + Vx(x).f(x, u) + ! L:7,j=l aij VXiXj (x)] 
uEU 

In the following, we assume that 0 is bounded. Let eI, ... , ed be a basis for JRd. 
Let the positive and negative parts of a function 4> be : 4>+ = ma.x(4),O) and 
4>- = ma.x( -4>,0). For any discretization step 8, let us consider the lattices: 8Zd = 

{8. L:~=1 jiei} where j}, ... ,jd are any integers, and ~6 = 8Zd n O. Let 8~6, the 

frontier of ~6 denote the set of points {~ E 8Zd \ 0 such that at least one adjacent 
point ~ ± 8ei E ~6} (see figure 1). 

Let U6 cUbe a finite control set that approximates U in the sense: 8 ~ 8' => 
U6' C U6 and U6U6 = U. Besides, we assume that: Vi = l..d, 

(3) 

By replacing the gradient Vx(~) by the forward and backward first-order finite
difference quotients: ~;, V(~) = l [V(~ ± 8ei) - V(~)l and VXiXj (~) by the second
order finite-difference quotients: 

~XiXi V(~) -b [V(~ + 8ei) + V(,' - 8ei) - 2V(O] 

~;iXj V(~) = 2P[V(~ + 8ei ± 8ej) + V(~ - 8ei =F 8ej) 

-V(~ + 8ei) - V(~ - 8ei) - V(~ + 8ej) - V(~ - 8ej) + 2V(~)] 
in the HJB equation, we obtain the following : for ~ E :£6, 

V6(~)In,+SUPUEUh {r(~,u) + L:~=1 [f:(~,u)'~~iV6(~) - fi-(~,U)'~;iV6(~) 

+ aii (~.u) ~ . . V(C) + " . . (at; (~,'U) ~ + . V(C) _ a~ (~,'U) ~ - . . V(C))] } = 0 
2 X,X,'" wJ'l=~ 2 x,x.1'" 2 x,xJ '" 

Knowing that (~t In,) is an approximation of ( ,l:l.t -1) as ~t tends to 0, we deduce: 

V6(~) SUPuEUh [,"'(~'U)L(EEbP(~,U,()V6«()+T(~,u)r(~,u)] (4) 

with T(~, u) (5) 

which appears as a DP equation for some finite Markovian Decision Process (see 
[Ber87]) whose state space is ~6 and probabilities of transition: 

p(~,u,~ ± 8ei) 

p(~, u, ~ + 8ei ± 8ej) 

p(~,u,~ - 8ei ± 8ej) 

p(~,u,() 

"'~~r) [28Ift(~, u)1 + aii(~' u) - Lj=l=i laij(~, u)l] , 
"'~~r)a~(~,u)fori=f:j, (6) 

"'~~r)a~(~,u) for i =f: j, 

o otherwise. 

Thanks to a contraction property due to the discount factor" there exists a unique 
solution (the fixed-point) V to equation (4) for ~ E :£6 with the boundary condition 
V6(~) = R(~) for ~ E 8:£6. The following theorem (see [Kus90] or [FS93]) insures 
that V 6 is a convergent approximation scheme. 
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Theorem 2 (Convergence of the FD scheme) V D converges to V as 8 1 0 : 

lim /)10 VD(~) = Vex) un~formly on 0 
~-x 

Remark 2 Condition (3) insures that the p(~, u, () are positive. If this condition 
does not hold, several possibilities to overcome this are described in [Kus90j. 

3 The reinforcement learning algorithm 

Here we assume that f is bounded from below. As the state dynami,:s (J and a) 
is unknown from the system, we approximate it by building a model f and a from 
samples of trajectories Xk(t) : we consider series of successive states Xk = Xk(tk) 
and Yk = Xk(tk + Tk) such that: 

- "It E [tk, tk + Tk], x(t) E N(~) neighbourhood of ~ whose diameter is inferior to 
kN.8 for some positive constant kN, 

- the control u is constant for t E [tk, tk + Tk], 

- T k satisfies for some positive kl and k2, 

(7) 

Then incrementally update the model : 

.1 ",n Yk - Xk 
n ~k=l Tk 

an(~,u) 
1 n (Yk - Xk - Tk.fn(~, u)) (Yk - Xk - Tk·fn(~, u))' 
-;;; Lk=l Tk (8) 

and compute the approximated time T( x, u) ~d the approximated probabilities of 
transition p(~, u, () by replacing f and a by f and a in (5) and (6). 

We obtain the following updating rule of the V D -value of state ~ : 

V~+l (~) = sUPuEU/) [,~/:(x,u) L( p(~, u, ()V~(() + T(x, u)r(~, u)] (9) 

which can be used as an off-line (synchronous, Gauss-Seidel, asynchronous) or on
time (for example by updating V~(~) as soon as a trajectory exits from the neigh
bourood of ~) DP algorithm (see [BBS95]). 

Besides, when a trajectory hits the boundary [JO at some exit point Xk(T) then 
update the closest state ~ E [JED with: 

(10) 

Theorem 3 (Convergence of the algorithm) Suppose that the model as well 
as the V D -value of every state ~ E :ED and control u E UD are regularly updated 
(respectively with (8) and (9)) and that every state ~ E [JED are updated with (10) 
at least once. Then "Ie> 0, :3~ such that "18 ~ ~, :3N, "In 2: N, 

sUP~EE/) IV~(~) - V(~)I ~ e with probability 1 
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4 Conclusion 

This paper presents a model-based RL algorithm for continuous stochastic control 
problems. A model of the dynamics is approximated by the mean and the covariance 
of successive states. Then, a RL updating rule based on a convergent FD scheme is 
deduced and in the hypothesis of an adequate exploration, the convergence to the 
optimal solution is proved as the discretization step 8 tends to 0 and the number 
of iteration tends to infinity. This result is to be compared to the model-free RL 
algorithm for the deterministic case in [Mun97]. An interesting possible future 
work should be to consider model-free algorithms in the stochastic case for which a 
Q-Iearning rule (see [Wat89]) could be relevant. 

A Appendix: proof of the convergence 

Let M f ' Ma, M fr. and Ma .• be the upper bounds of j, a, f x and 0' x and m f the lower 
bound of f. Let EO = SUP€EI:h !V0 (';) - V(';)I and E! = SUP€EI:b \V~(';) - VO(.;)\. 

A.I Estimation error of the model fn and an and the probabilities Pn 

Suppose that the trajectory Xk(t) occured for some occurence Wk(t) of the brownian 
motion: Xk(t) = Xk + f!k f(Xk(t),u)dt + f!" a(xk(t),U)dwk. Then we consider a 
trajectory Zk (t) starting from .; at tk and following the same brownian motion: 

Zk(t) ='; + fttk. f(Zk(t), u)dt + fttk a(zk(t), U)dWk' 

Let Zk = Zk(tk + Tk). Then (Yk - Xk) - (Zk -.;) = ftk [f(Xk(t), u) - f(Zk(t), u)] dt + 

ftt:.+Tk [a(xk(t), u) - a(zk(t), u)J dWk. Thus, from the C1 property of f and a, 

II(Yk - Xk) - (Zk - ';)11 ~ (Mf'" + M aJ.kN.Tk.8. (11) 

The diffusion processes has the following property ~ee for example the ItO-Taylor 
majoration in [KP95j) : Ex [ZkJ = ';+Tk.f(';, U)+O(Tk) which, from (7), is equivalent 

to: Ex [z~:g] = j(';,u) + 0(8). Thus from the law of large numbers and (11): 

li~-!~p Ilfn(';, u) - f(';, u)11 - li;;:s~p II~ L~=l [Yk;kX& - ¥.] II + 0(8) 

(Mf:r: + M aJ·kN·8 + 0(8) = 0(8) w.p. 1 (12) 

Besides, diffusion processes have the following property (again see [KP95J): 
Ex [(Zk -.;) (Zk - .;)'] = a(';, U)Tk + f(';, u).f(';, U)'.T~ + 0(T2) which, from (7), 

is equivalent to: Ex [(Zk-€-Tkf(S'U)~(kZk-S-Tkf(S'U»/] = a(';, u) + 0(82). Let rk = 

Zk -.; - Tkf(';, u) and ik = Yk - Xk - Tkfn(';, u) which satisfy (from (11) and (12» : 

Ilrk - ikll = (Mf:r: + M aJ.Tk.kN.8 + Tk.o(8) (13) 

From the definition of Ci;;(';,u), we have: Ci;;(';,u) - a(';,u) = ~L~=l '\:1.' -
Ex [r~':k] + 0(82 ) and from the law of large numbers, (12) and (13), we have: 

li~~~p 11~(';,u) - a(';,u)11 = li~-!~p II~ L~=l rJ./Y - r~':k II + 0(82 ) 

Ilik -rkllli:!s!p~ fl (II~II + II~II) +0(82 ) = 0(82 ) 



1034 R. Munos and P. Bourgine 

"In(';, u) - I(';, u)" �~� kf·8 w.p. 1 

1Ill;;(';, u) - a(';, u)1I �~� ka .82 w.p. 1 
(14) 

Besides, from (5) and (14), we have: 

1 (c ) _ - (c )1 < d.(k[.62+d.k,,62 ) J:2 < k J:2 T r.",U Tn r.",U _ (d.m, .6)2 U _ T'U (15) 

and from a property of exponential function, 

�I�,�T�(�~�.�u�)� _ ,7' .. (€ .1£) I = kT.In �~� .82. (16) 

We can deduce from (14) that: 

. 1 ( ) -( )1 (2.6.Mt+d.Ma)(2.kt+d.k,,)62 k J: limsupp';,u,( -Pn';,u,( �~� 6mr(2.k,+d.ka)62 S; puw.p.l 
n-+oo 

(17) 

A.2 Estimation of �I�V�~�+�l�(�'�;�)� - V6(.;) 1 

Mter having updated �V�~�(�'�;�)� with rule (9), let A denote the difference 
�I�V�~�+�l�(�'�;�)� - V6(.;) I. From (4), (9) and (8), 

A < ,T(€.U) L: [P(';, u, () - p(.;, u, ()] V6 (() + ( ,T(€.1£) - �,�7�'�(�~�'�1�£�»�)� L p(.;, u, () V 6 (() 
( ( 

+,7' (€.u) . L:p(.;, u, () [V6(() - �V�~�(�(�)�]� + L:p(.;, u, ().T(';, u) [r(';, u) - F(';, u)] 
( ( 

+ L:( p(.;, u, () [T(';, u) - T(';, u)] r(';, u) for all u E U6 

As V is differentiable we have : Vee) = V(';) + VX ' (( -.;) + 0(1I( - ';11). Let 
us define a linear function V such that: Vex) = V(';) + VX ' (x - ';). Then 
we have: [P(';, u, () - p(.;, u, ()] V6(() = [P(';, u, () - p(.;, u, ()] . [V6(() - V(()] + 
[P(';,u,()-p(';,u,()]V((), thus: L:([p(';,u,()-p(';,u,()]V6(() = kp .E6.8 + 
L([P(';,U,()-p(.;,u,()] [V(() +0(8)] = [V(7J)-VUD] + kp .E6.8 + 0(8) = 

[V(7J) - V(1j)] + 0(8) with: 7J = L:( p(';, u, () (( -.;) and 1j = L:( p(.;, u, () (( - .;). 

Besides, from the convergence of the scheme (theorem 2), we have E6.8 = 
0(8). From the linearity of V, IV(() - V(Z) I �~� II( -ZII·Mv", S; 2kp 82 . Thus 

IL( [P(';, u, () - p(.;, u, ()] V6 (() I = 0(8) and from (15), (16) and the Lipschitz prop
erty of r, 

A = 1'l'(€'U), L:( p(.;, u, () [V6(() - �V�~� (()] 1+ 0(8). 

As ,..,.7'(€.u) < 1 - 7'(€.U) In 1 < 1 _ T(€.u)-k.,.62 In 1 < 1 _ ( 6 _ !ix..82) In 1 
I - 2 'Y - 2 'Y - 2d(M[+d.M,,) 2 'Y ' 

we have: 
A = (1 - �k�.�8�)�E�~� + 0(8) (18) 

with k = �2�d�(�M�[�~�d�.�M�,�,�)�.� 




