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Abstract 

This paper considers the problem of learning the ranking of a set 
of alternatives based upon incomplete information (e.g., a limited 
number of observations). We describe two algorithms for hypoth­
esis ranking and their application for probably approximately cor­
rect (PAC) and expected loss (EL) learning criteria. Empirical 
results are provided to demonstrate the effectiveness of these rank­
ing procedures on both synthetic datasets and real-world data from 
a spacecraft design optimization problem. 

1 INTRODUCTION 

In many learning applications, the cost of information can be quite high, imposing 
a requirement that the learning algorithms glean as much usable information as 
possible with a minimum of data. For example: 

• In speedup learning, the expense of processing each training example can 
be significant [Tadepalli921. 

• In decision tree learning, ihe cost of using all available training examples 
when evaluating potential attributes for partitioning can be computation­
ally ex.pensive [Musick93]. 

• In evaruating medical treatment policies, additional training examples im-

Ely suboptimal treatment of human subjects. 
• n data-poor applications, training data may be very scarce and learning 

as well as possible from limited data may be key. 

This paper provides a statistical decision-theoretic framework for the ranking of 
parametric distributions. This framework will provide the answers to a wide range 
of questions about algorithms such as: how much information is enough? At what 
point do we have adequate information to rank the alternatives with some requested 
confidence? 
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The remainder of this paper is structured as follows. First, we describe the hypoth­
esis ranking problem more formally, including definitions for the probably approxi­
mately correct (PAC) and expected loss (EL) decision criteria. We then define two 
algorithms for establishing these criteria for the hypothesis ranking problem - a re­
cursive hypothesis selection algorithm and an adjacency based algorithm. Next, we 
describe empirical tests demonstrating the effectiveness of these algorithms as well 
as documenting their improved performance over a standard algorithm from the sta­
tistical ranking literature. Finally, we describe related work and future extensions 
to the algorithms. 

2 HYPOTHESIS RANKING PROBLEMS 
Hypothesis ranking problems, an extension of hypothesis selection problems, are an 
abstract class of learning problems where an algorithm is given a set of hypotheses 
to rank according to expected utility over some unknown distribution, where the 
expected utility must be estimated from training data. 

In many of these applications, a system chooses a single alternative and never re­
visits the decision. However, some systems require the ability to investigate several 
options (either serially or in parallel), such as in beam search or iterative broad­
ening, where the ranking formulation is most appropriate. Also, as is the case 
with evolutionary approaches, a system may need to populate future alternative 
hypotheses on the basis of the ranking of the current population[Goldberg89] . 

In any hypothesis evaluation problem, always achieving a correct ranking is im­
possible in practice, because the actual underlying probability distributions are 
unavailable and there is always a (perhaps vanishingly) small chance that the al­
gorithms will be unlucky because only a finite number of samples can be taken. 
Consequently, rather than always requiring an algorithm to output a correct rank­
ing, we impose probabilistic criteria on the rankings to be produced. While several 
families of such requirements exist, in this paper we examine two, the probably 
approximately correct (PAC) requirement from the computational learning theory 
community [Valiant84] and the expected loss (EL) requirement frequently used in 
decision theory and gaming problems [Russe1l92] . 

The expected utility of a hypothesis can be estimated by observing its values over a 
finite set of training examples. However, to satisfy the PAC and EL requirements, 
an algorithm must also be able to reason about the potential difference between 
the estimated and true utilities of each hypotheses. Let Ui be the true expected 
utility of hypothesis i and let Ui be the estimated expected utility of hypothesis i. 
Without loss of generality, let us presume that the proposed ranking of hypotheses 
is U1 > U2 >, ... , > Uk-I> Uk. The PAC requirement states that for some user­
specified £. with probability 1 - 8: 

k-l 

/\ [(Ui + f) > MAX(Ui+I, ... ,UIe)] (1) 
;=1 

Correspondingly, let the loss L of selecting a hypothesis HI to be the best from a 
set of k hypotheses HI, ... , Hk be as follows . 

L(HI' {HI, ... ,HIe}) = MAX(O, MAX(U2 , ... ,UIe) - UI) (2) 

and let the loss RL of a ranking H 1, ... , H k be as follows. 
Ie-I 

RL(Hl, ... , Hie) = L L(Hi, {Hi+l, .. . , Hie}) (3) 
i=1 

A hypothesis ranking algorithm which obeys the expected loss requirement must 
produce rankings that on average have less than the requested expected loss bound. 
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Consider ranking the hypotheses with expected utilities: U1 = 1.0, U2 = 0.95, U3 = 
0.86. The ranking U2 > U1 > U3 is a valid PAC ranking for { = 0.06 but not for 
{ = 0.01 and has an observed loss of 0.05 + 0 = 0.05. 

However, while the confidence in a pairwise comparison between two hypotheses is 
well understood, it is less clear how to ensure that desired confidence is met in the 
set of comparisons required for a selection or the more complex set of comparisons 
required for a ranking. Equation 4 defines the confidence that Ui + { > Uj, when 
the distribution underlying the utilities is normally distributed with unknown and 
unequal variances. 

(4) 

where ¢ represents the cumulative standard normal distribution function, and n, 
Ui-j, and Si-j are the size, sample mean, and sample standard deviation of the 
blocked differential distribution, respectively 1 . 

Likewise, computation of the expected loss for asserting an ordering between a pair 
of hypotheses is well understood, but the estimation of expected loss for an entire 
ranking is less clear. Equation 5 defines the expected loss for drawing the conclusion 
Ui > Uj, again under the assumption ~fnormality (see [Chien95] for further details). 

U'-i :l -O.6n() oc 
~ ' e Si_j fJ -j :l 

EL(Ui > Ujl = .-] + ~ e- O• 6 • dz (5) 
';21rn .,j2; _ \~irn 

'-J 

In the next two subsections, we describe two interpretations for estimating the like­
lihood that an overall ranking satisfies the PAC or EL requirements by estimating 
and combining pairwise PAC errors or EL estimates. Each of these interpretations 
lends itself directly to an algorithmic implementation as described below. 

2.1 RANKING AS RECURSIVE SELECTION 
One way to determine a ranking HI, ... , Hk is to view ranking as recursive selection 
from the set of remaining candidate hypotheses. In this view, the overall ranking 
error, as specified by the desired confidence in PAC algorithms and the loss thresh­
hold in EL algorithms, is first distributed among k - 1 selection errors which are 
then further subdivided into pairwise comparison errors. Data is then sampled un­
til the estimates of the pairwise comparison error (as dictated by equation 4 or 5) 
satisfy the bounds set by the algorithm. 

Thus, another degree of freedom in the design of recursive ranking algorithms is 
the method by which the overall ranking error is ultimately distributed among 
individual pairwise comparisons between hypotheses. Two factors influence the 
way in which we compute error distribution. First, our model of error combination 
determines how the error allocated for individual comparisons or selections combines 
into overall ranking error and thus how many candidates are available as targets 
for the distribution. Using Bonferroni's inequality, one combine errors additively, 
but a more conservative approach might be to assert that because the predicted 
"best" hypothesis may change during sampling in the worst case the conclusion 
might depend on all possible pairwise comparisons and thus the error should be 
distributed among all (~) pairs of hypotheses2 ). 

INote that in our approach we block examples to further reduce sampling complexity. 
Blocking forms estimates by using the difference in utility between competing hypotheses 
on each observed example. Blocking can significantly reduce the variance in the data when 
the hypotheses are not independent. It is trivial to modify the formulas to address the 
cases in which it is not possible to block data (see [Moore94, Chien95] for further details). 

2For a discussion of this issue, see pp. 18-20 of [Gratch93]. 
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Second, our policy with respect to allocation of error among the candidate com­
parisons or selections determines how samples will be distributed. For example, in 
some contexts, the consequences of early selections far outweigh those of later se­
lections. For these scenarios, we have implemented ranking algorithms that divide 
overall ranking error unequally in favor of earlier selections3 . Also, it is possible to 
divide selection error into pairwise error unequally based on estimates of hypothesis 
parameters in order to reduce sampling cost (for example, [Gratch94] allocates error 
rationally) . 

Within the scope of this paper, we only consider algorithms that: (1) combine 
pairwise error into selection error additively, (2) combine selection error into overall 
ranking error additively and (3) allocate error equally at each level. 

One disadvantage of recursive selection is that once a hypothesis has been selected, 
it is removed from the pool of candidate hypotheses. This causes problems in rare 
instances when, while sampling to increase the confidence of some later selection, 
the estimate for a hypothesis' mean changes enough that some previously selected 
hypothesis no longer dominates it. In this case, the algorithm is restarted taking 
into account the data sampled so far. 

These assumptions result in the following formulations (where d(U11>£ {U2' ... , Uk}) 
is used to denote the error due to the action of selecting hypothesis 1 under Equation 
1 from the set {HI, ... , Hk} and d(UII>{U2, ... , Uk}) denotes the error due to selection 
loss in situations where Equation 2 applies): 

t5rec(UI > U2 > ... > Uk) = t5rec (U2 > U3 > ... > Uk) 
+t5(UI t>. {U2 , ••• ,Uk}) (6) 

where drec(Uk) = 0 (the base case for the recursion) and the selection error is as 
defined in [Chien95]: 

k 

t5(Ul t>. {U2 , ••• ,Uk}) = L 15 1 ,. 

.=2 

using Equation 4 to compute pairwise confidence. 

Algorithmically, we implement this by: 

(7) 

1. sampling a default number of times to seed the estimates for each hypothesis 
mean and variance, 

2. allocating the error to selection and pairwise comparisons as indicated 
above, 

3. sampling until the desired confidences for successive selections is met, and 
4. restarting the algorithm if any of the hypotheses means changed signifi­

cantly enough to change the overall ranking. 
An analogous recursive selection algorithm based on expected loss is defined as 
follows. 

ELrec(U2 > U3 > ... > Uk) 
+EL(U1 t> {U2 , ••• ,Uk}) 

where ELrec(Uk) = 0 and the selection EL is as defined in [Chien95]: 

k 

EL(U1 I> {U2, ... , Uk}) = L EL(Ut, Ud 
i=2 

3Space constraints preclude their description here. 

(8) 

(9) 
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2.2 RANKING BY COMPARISON OF ADJACENT ELEMENTS 
Another interpretation of ranking confidence (or loss) is that only adjacent elements 
in the ranking need be compared. In this case, the overall ranking error is divided 
directly into k -1 pairwise comparison errors. This leads to the following confidence 
equation for the PAC criteria: 

k-l 
dac(i(Ul > U2 > ... > Uk) = Ldi,i+1 

i=l 

And the following equation for the EL criteria.k_l 

ELac(i(Ul > U2 > ... > Uk) = '2: EL (Ui,Ui+d 
i=l 

(10) 

(11) 

Because ranking by comparison of adjacent hypotheses does not establish the dom­
inance between non-adjacent hypotheses (where the hypotheses are ordered byob­
served mean utility), it has the advantage of requiring fewer comparisons than 
recursive selection (and thus may require fewer samples than recursive selection). 
However, for the same reason, adjacency algorithms may be less likely to correctly 
bound probability of correct selection (or average loss) than the recursive selection 
algorithms. In the case of the PAC algorithms, this is because f-dominance is not 
necessarily transitive. In the case of the EL algorithms, it is because expected loss is 
not additive when considering two hypothesis relations sharing a common hypoth­
esis. For instance, the size of the blocked differential distribution may be different 
for each of the pairs of hypotheses being compared. 

2.3 OTHER RELEVANT APPROACHES 
Most standard statistical ranking/selection approaches make strong assumptions 
about the form of the problem (e.g., the variances associated with underlying utility 
distribution of the hypotheses might be assumed known and equal). Among these, 
Turnbull and Weiss [Turnbull84] is most comparable to our PAC-based approach4. 
Turnbull and Weiss treat hypotheses as normal random variables with unknown 
mean and unknown and unequal variance. However, they make the additional 
stipulation that hypotheses are independent. So, while it is still reasonable to 
use this approach when the candidate hypotheses are not independent, excessive 
statistical error or unnecessarily large training set sizes may result. 

3 EMPIRICAL PERFORMANCE EVALUATION 
We now turn to empirical evaluation of the hypothesis ranking techniques on real­
world datasets. This evaluation serves three purposes. First, it demonstrates that 
the techniques perform as predicted (in terms of bounding the probability of incor­
rect selection or expected loss). Second, it validates the performance of the tech­
niques as compared to standard algorithms from the statistical literature. Third, 
the evaluation demonstrates the robustness of the new approaches to real-world 
hypothesis ranking problems. 

An experimental trial consists of solving a hypothesis ranking problem with a given 
technique and a given set of problem and control parameters. We measure perfor­
mance by (1) how well the algorithms satisfy their respective criteria; and (2) the 
number of samples taken. Since the performance of these statistical algorithms on 
any single trial provides little information about their overall behavior, each trial 
is repeated multiple times and the results are averaged across 100 trials. Because 

4 PAC-based approaches have been investigated extensively in the statistical ranking and 
selection literature under the topic of confidence interval based algorithms (see [Haseeb85] 
for a review of the recent literature). 
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Table 1: Estimated expected total number of observations to rank DS-2 spacecraft 
designs. Achieved b bTt f t k' . h' thesis. pro a I I yo correc ran mg IS sown m paren 

k 'Y !!.. TURNtlULL PACrec PACod ' 
10 0.75 2 534 {0.96 144 1.00 92 0.98 
10 0 .90 2 667 (0 .98 160 1.00 98 1.00 
10 0.95 2 793 (0.99 177 1.00 103 0.99 

Table 2: Estimated expected total number of observations and expected loss of an 
incorrect ranking of DS-2 penetrator designs. 

Parameters EL EL d ' rec a 

k ~ Samples Loss l:)amples l..oss 
10 0.10 152 0.005 77 0 .014 
10 0 .05 200 0 .003 90 0 .006 
10 0 .02 378 0 .003 139 0 .003 

the PAC and expected loss criteria are not directly comparable, the approaches are 
analyzed separately. 

Experimental results from synthetic datasets are reported in [Chien97]. The eval­
uation of our approach on artificially generated data is used to show that: (1) the 
techniques correctly bound probability of incorrect ranking and expected loss as pre­
dicted when the underlying assumptions are valid even when the underlying utility 
distributions are inherently hard to rank , and (2) that the PAC techniques com­
pare favorably to the algorithm of Thrnbull and Weiss in a wide variety of problem 
configurations. 

The test of real-world applicability is based on data drawn from an actual NASA 
spacecraft design optimization application. This data provides a strong test of the 
applicability of the techniques in that all of the statistical techniques make some 
form of normality assumption - yet the data in this application is highly non-normal. 

Tables 1 and 2 show the results of ranking 10 penetrator designs using the PAC­
based, Thrnbull, and expected loss algorithms In this problem the utility function 
is the depth of penetration of the penetrator, with those cases in which the pen­
etrator does not penetrate being assigned zero utility. As shown in Table 1, both 
PAC algorithms significantly outperformed the Thrnbull algorithm, which is to be 
expected because the hypotheses are somewhat correlated (via impact orientations 
and soil densities). Table 2 shows that the ELrec expected loss algorithm effectively 
bounded actual loss but the ELad,i algorithm was inconsistent . 

4 DISCUSSION AND CONCLUSIONS 

There are a number of areas of related work. First, there has been considerable 
analysis of hypothesis selection problems. Selection problems have been formalized 
using a Bayesian framework [Moore94, Rivest88] that does not require an initial 
sample, but uses a rigorous encoding of prior knowledge. Howard [Howard70] also 
details a Bayesian framework for analyzing learning cost for selection problems. If 
one uses a hypothesis selection framework for ranking, allocation of pairwise errors 
can be performed rationally [Gratch94]. Reinforcement learning work [Kaelbling93] 
with immediate feedback can also be viewed as a hypothesis selection problem. 

In su~mary, this paper has described the hypothesis ranking problem, an extension 
to the hypothesis selection problem. We defined the application of two decision 
criteria, probably approximately correct and expected loss, to this problem. We then 
defined two families of algorithms, recursive selection and adjacency, for solution of 
hypothesis ranking problems. Finally, we demonstrated the effectiveness of these 
algorithms on both synthetic and real-world datasets, documenting improved per­
formance over existing statistical approaches. 
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