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Abstract 

We introduce a new Boolean computing element related to the Lin­
ear Threshold element, which is the Boolean version of the neuron. 
Instead of the sign function, it computes an arbitrary (with poly­
nornialy many transitions) Boolean function of the weighted sum of 
its inputs. We call the new computing element an LT M element, 
which stands for Linear Threshold with Multiple transitions. 

The paper consists of the following main contributions related to 
our study of LTM circuits: (i) the creation of efficient designs of 
LTM circuits for the addition of a multiple number of integers and 
the product of two integers. In particular, we show how to compute 
the addition of m integers with a single layer of LT M elements. 
(ii) a proof that the area of the VLSI layout is reduced from O(n2 ) 

in LT circuits to O(n) in LTM circuits, for n inputs symmetric 
Boolean functions, and (iii) the characterization of the computing 
power of LT M relative to LT circuits. 

1 Introduction 

Human brains are by far superior to computers in solving hard problems like combi­
natorial optimization and image and speech recognition, although their basic build­
ing blocks are several orders of magnitude slower. This observation has boosted 
interest in the field of artificial neural networks [Hopfield 82], [Rumelhart 82]. The 
latter are built by interconnecting artificial neurons whose behavior is inspired by 
that of biological neurons. In this paper we consider the Boolean version of an artifi­
cial neuron, namely, a Linear Threshold (LT) element, which computes a neural-like 
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Figure 1: Schematic representation of LT, SYM and LTM computing elements. 

Boolean function of n binary inputs [Muroga 71]. An LT element outputs the sign 
of a weighted sum of its Boolean inputs. The main issues in the study of networks 
(circuits) consisting of LT elements, called LT circuits, include the estimation of 
their computational capabilities and limitations and the comparison of their prop­
erties with those of traditional Boolean logic circuits based on AND, OR and NOT 
gates (called AON circuits). For example, there is a strong evidence that LT cir­
cuits are more efficient than AON circuits in implementing a number of important 
functions including the addition, product and division of integers [Siu 94], [Siu 93]. 

Motivated by our recent work on the VLSI implementation of LT elements 
[Bohossian 95b], we introduce in this paper a more powerful computing element, 
a multiple threshold neuron, which we call LTM, which stands for Linear Thresh­
old with Multiple transitions, see [Haring 66] and [Olafsson 88]. Instead of the 
sign function in the LT element it computes an arbitrary (with polynomialy many 
transitions) Boolean function of the weighted sum of its inputs. 

The main issues in the study of LTM circuits (circuits consisting of LTM elements) 
include the estimation of their computational capabilities and limitations and the 
comparison of their properties to those of AON circuits. A natural approach in this 
study is first to understand the relation between LT circuits and LT M circuits. Our 
main contributions in this paper are: 

• We demonstrate the power of LTM by deriving efficient designs of LTM 
circuits for the addition of m integers and the product of two integers. 

• We show that LT M circuits are more amenable in implementation than LT 
circuits. In particular, the area of the VLSI layout is reduced from O(n2 ) 

in LT circuits to O(n) in LTM circuits, for n input symmetric Boolean 
functions. 

• We characterize the computing power of LT M relative to LT circuits. 

Next we describe the formal definitions of LT and LT M elements. 

1.1 Definitions and Examples 

Definition 1 (Linear Threshold Gate - LT) 
A linear threshold gate computes a Boolean function of its binary inputs : 

n 

f(X) = sgn(wo + L WiXi) 

i=l 
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where the Wi are integers and sgn(.) outputs 1 if its argument is greater or equal to 
0, and 0 otherwise. 

Figure 1 shows an-input LT element; if L~ WiXi ~ -Wo the element outputs 1, 
otherwise it outputs o. A single LT gate is unable to compute parity. The latter 
belongs to the general class of symmetric functions - SY M. 

Definition 2 (Symmetric Functions - SY M) 
A Boolean function f is symmetric if its value depends only on the number of ones 
in the input denoted by IX I. 
Figure 1 shows an example of a symmetric function; it has three transitions, it 
outputs 1 for IXI < tl and for t2 ~ IXI < t3, and 0 otherwise. AND, OR and 
parity are examples of symmetric functions. A single LT element can implement 
only a limited subset of symmetric functions. We define LT M as a generalization 
of SY M. That is, we allow the weights to be arbitrary as in the case of LT, rather 
than fixed to 1 (see Figure 1 ). 

Definition 3 (Linear Threshold Gate with Multiple Transitions - LT M) 
A function f is in LTM if there exists a set of weights Wi E Z, 1 ~ i ~ n and a 
function h : Z ---+ {O, 1} such that 

n 

f(X) = h(L wixd for all X E {O,l}n 
i=l 

The only constraint on h is that it undergoes polynomialy many transitions as its 
input scans [- L~=l IWi I, L~=l IWi I]· 

Notice that without the constraint on the number of transitions, an LTM gate is 
capable of computing any Boolean function. Indeed, given an arbitrary function f, 
let Wi = 2i - 1 and h(L~ 2i - 1xd = f(xt, .• • , x n ). 

Example 1 (XOR E LTM) 
XOR(X) outputs 1 if lXI, the number of l's in X, is odd. Otherwise it outputs 
O. To implement it choose Wi = 1 and h(k) = ~(1 - (_l)k) for 0 ~ k ~ n. Note 
that h(k) needs not be defined for k < 0 and k > n, and has polynomialy many 
transitions. 

Another useful function that LTM can compute is ADD (X, Y), the sum of two 
n-bit integers X and Y. 

Example 2 (ADD E LT M) 
To implement addition we set fl (X, Y) = h, (L~=l 2i (Xi + yd) where h, (k) = 1 for 
k E [2' ,2 x 2' - 1] U [3 X 2' , +00). Defined thus, fl computes the m-th bit of X + Y. 

1.2 Organization 

The paper is organized as follows . In Section 2, we study a number of applications 
as well as the VLSI implementations of LTM circuits. In particular, we show how 
to compute the addition of m integers with a single layer of LT!vI elements. In 
Section 3, we prove J..he characterization results of LT M - inclusion relations, in 
particular LTM ~ LT2. In addition, we indicate which inclusions are proper and 
exhibit functions to demonstrate the separations. 
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2 LT M Constructions 

The theoretical results about LT M can be applied to the VLSI implementation of 
Boolean functions. The idea of a gate with multiple thresholds came to us as we 
were looking for an efficient VLSI implementation of symmetric Boolean functions. 
Even though a single LT gate is not powerful enough to implement any symmetric 
function, a 2-layer LT circuit is. FUrthermore, it is well known that such a circuit 
performs much better than the traditional logic circuit based on AND, OR and 
NOT gates. The latter has exponential size (or unbounded depth) [Wegener 91]. 

Proposition 4 (LT2 versus LT M for symmetric function implementation) 
The LT2 layout of a symmetric function requires area of O(n2), while using LT M 
one needs only area of O( n). 

PROOF: 

Implementing a generalized symmetric function in LT2 requires up to n LT gates in 
the first layer. Those have the same weights Wi except for the threshold Woo Instead 
of laying out n times the same linear sum E~ WiXi we do it once and compare the 
result to n different thresholds. The resulting circuit corresponds to a single LT M 
gate. 0 

The LT2 layout is redundant, it has n copies of each weight, requiring area of at 
least O(n2). On the other hand, LTM performs a single weighted sum, its area 
requirement is O(n). 

A single LT M gate can compute the addition of m n-bit integers M ADD. The 
only constraint is that m be polynomial in n. 

Theorem 5 (MADD E LTM) 
A single layer of LT M gates can compute the sum of m n-bit integers, provided 
that m is at most polynomial in n. 

PROOF: 

MAD D returns an integer of at most n + log m bits. We need one LT M gate per 
bit. The least significant bit is computed by a simple m-bit XOR. For all other 
bits we use h(X(l), .. ,x(m») = hl(E~=12i Ej=l x~j») to compute the l-th bit ofthe 
mm. 0 

Corollary 6 (PRODUCT E PTM) A single layer of PTM (which is defined 
below) gates, can compute the product of m n-bit integers, provided that m is at 
most polynomial in n. 

PROOF: 

By analogy with PTb defined in [Bruck 90], in PT Ml (or simply PT M) we allow a 
polynomial rather than a linear sum: f(X) = h(WIXl + ... +wnxn +W(1,2)XIX2+ ... ) 
However we restrict the sum to have polynomialy many terms (else, any Boolean 
function could be realized with a single gate). The product of two n-bit integers 
X and Y can be written as PRODUCT(X, Y) = E~=l XiY. We use the con­
struction of MADD in order to implement PRODUCT. PRODUCT(X, Y) = 

"n "I i MADD(x1Y,x2Y , ... ,xnY). fleX, Y) = hi (LJj=l LJi=12 XjYi) b outputs the l-th 
bit of the product. 0 
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Figure 2: Relationship between Classes 

3 Classification of LTM 

.- ---
We me a hat to indicate small (polynomialy growing) weights, e.g. LT, LT M 
[Bohossian 95a], [Siu 91], and a subscript to indicate the depth (number of layers) 
of the circuit of more than a single layer. All the circuits we consider in this paper 
are of polynomial size (number of elements) in n (number of inputs). For example, 
the class fr2 consists of those B0...2!ean functions that can be implemented by a 
depth-2 polynomial size circuit of LT elements. 

Figure 2 depicts the membership relations between five classes of Boolean functions, 
including, LT, ilr, LTM, LTM and ilr2, along with the functions used to establish 
the separations. 

In this section we will prove the relations illustrated by Figure 2 . 

Theorem 7 (Classification of LTM ) 
The inclusions and separations shown in Figure 12 hold. That is, 

.-
1. LT ~ LT ; LTM 

---12. LT ~ LTM ; LTM 
.-

9. LTM; LT2 

4· XOR E CTM but XOR tJ. LT 

5. CaMP E LT but CaMP tJ. LTM 

6. ADD E LTM but ADD tJ. LTULTM 

7. IPk E fr2 but 1Pk tJ. LTM 

PROOF: 

We show only the outline of the proof. The complete version can be found in 
[Bohossian 96]. Claims 1 and 2 follow from the definition. The first part of Claim 4 
was shown in Example 1 and the second is well known. In Claim 5, CaMP stands 
for the Comparison functio!lt the proof mes the pigeonhole principle and is related 
to the proof of CaMP tJ. LT which can be found in [Siu 91]. In Claim 6 to show 
that ADD tJ. LTM we use the same idea as for CaMP. Claim 3 is proved using a 
result from [Goldman 93]: a single LT gate with arbitrary weights can be realized 
by an LT2 circuit. Claim 7 introduces the function IPk(X, Y) = 1 iff L:~ XiYi ~ k, 
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o otherwise. If IPk E LTM, using the result from [Goldman 93], we can construct 
.-

a LT2 circuit that computes IP2 (Inner Product mod 2) which is known to be false 
[Hajnal 94]. 0 

What remains to be shown in order to complete the classification picture is fr = 
LT n LTM. We conjecture that this is true. 

4 Conclusions 

Our original goal was to use theoretical results in order to efficiently layout a 
generalized symmetric function. During that process we came to the conclusion 
that the LT2 implementation is partially redundant, which lead to the definition 
of LTM, a new, more powerful computing element. We characterized the power 
of LTM relative to LT. We showed how it can be used to reduce the area of 
VLSI layouts from O(n2 ) to O(n) and derive efficient designs for multiple addition 
and product. Interesting directions for future investigation are (i) to prove the 
conjecture: fr = LT n LTM, (ii) to apply spectral techniques ([Bruck 90)) to the 
analysis of LT M, in particular show how PT M fits into the classification picture 
(Figure 2 ). 

Another direction for future research consists in introducing the ideas described 
above in the domain of VLSI. We have fabricated a programmable generalized 
symmetric function on a 2J,L, analog chip using the model described above. Floating 
gate technology is used to program the weights. We store a weight on a single 
transistor by injecting and tunneling electrons on the floating gate [Hasler 95]. 
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