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Abstract 

We compare different methods to combine predictions from neu­
ral networks trained on different bootstrap samples of a regression 
problem. One of these methods, introduced in [6] and which we 
here call balancing, is based on the analysis of the ensemble gen­
eralization error into an ambiguity term and a term incorporating 
generalization performances of individual networks. We show how 
to estimate these individual errors from the residuals on valida­
tion patterns. Weighting factors for the different networks follow 
from a quadratic programming problem. On a real-world problem 
concerning the prediction of sales figures and on the well-known 
Boston housing data set, balancing clearly outperforms other re­
cently proposed alternatives as bagging [1] and bumping [8]. 

1 EARLY STOPPING AND BOOTSTRAPPING 

Stopped training is a popular strategy to prevent overfitting in neural networks. 
The complete data set is split up into a training and a validation set . Through 
learning the weights are adapted in order to minimize the error on the training 
data. Training is stopped when the error on the validation data starts increasing. 
The final network depends on the accidental subdivision in training and validation 
set , and often also on the, usually random, initial weight configuration and chosen 
minimization procedure. In other words , early stopped neural networks are highly 
unstable: small changes in the data or different initial conditions can produce large 
changes in the estimate. As argued in [1 , 8], with unstable estimators it is advisable 
to resample, i.e ., to apply the same procedure several times using different sub­
divisions in training and validation set and perhaps starting from different initial 
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configurations. In the neural network literature resampling is often referred to as 
training ensembles of neural networks [3, 6]. In this paper, we will discuss methods 
for combining the outputs of networks obtained through such a repetitive procedure. 

First, however, we have to choose how to generate the subdivisions in training and 
validation sets. Options are, among others, k-fold cross-validation, subsampling and 
bootstrapping. In this paper we will consider bootstrapping [2] which is based on 
the idea that the available data set is nothing but a particular realization of some 
probability distribution. In principle, one would like to do inference on this "true" 
yet unknown probability distribution. A natural thing to do is then to define an em­
pirical distribution. With so-called naive bootstrapping the empirical distribution 
is a sum of delta peaks on the available data points, each with probability content 
l/Pdata with Pdata the number of patterns. A bootstrap sample is a collection of 
Pdata patterns drawn with replacement from this empirical probability distribution. 
Some of the data points will occur once, some twice and some even more than 
twice in this bootstrap sample. The bootstrap sample is taken to be the training 
set, all patterns that do not occur in a particular bootstrap sample constitute the 
validation set. For large Pdata, the probability that a pattern becomes part of the 
validation set is (1 - l/Pdata)Pda.ta. ~ l/e ~ 0.368. An advantage of bootstrapping 
over other resampling techniques is that most statistical theory on resampling is 
nowadays based on the bootstrap. 

Using naive bootstrapping we generate nrun training and validation sets out of our 
complete data set of Pdata input-output combinations {iI', tl'}. In this paper we 
will restrict ourselves to regression problems with, for notational convenience, just 
one output variable. We keep track of a matrix with components q; indicating 
whether pattern p is part of the validation set for run i (q; = 1) or of the training 
set (qf = 0). On each subdivision we train and stop a neural network with one 
layer of nhidden hidden units. The output or of network i with weight vector w( i) 
on input il' reads 

o~ 
I + wo(i) , 

where we use the definition x~ == 1. The validation error for run i can be written 

1 Pda.ta. 
Evalidation(i) == -:- L qrr; , 

PI /.'=1 

with Pi == L:/.' qf ~ 0.368 Pdata, the number of validation patterns m run z, and 
r; == (or - ttl)2/2, the error of network i on pattern p. 

After training we are left with nrun networks, with, in practice, quite different 
performances on the complete data set. How should we combine all these outputs 
to get the best possible performance on new data? 

2 COMBINING ESTIMATORS 

Several methods have been proposed to combine estimators (see e.g. (5) for a re­
view). In this paper we will only consider estimators with the same architecture 
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but trained and stopped on different subdivisions of the data in training and val­
idation sets. Recently, two such methods have been suggested for bootstrapped 
estimators: bagging [1], an acronym for bootstrap aggregating, and bumping [8], 
meaning bootstrap umbrella of model parameters. With bagging, the prediction on 
a newly arriving input vector is the average over all network predictions. Bagging 
completely disregards the performance of the individual networks on the data used 
for training and stopping. Bumping, on the other hand, throws away all networks 
except the one with the lowest error on the complete data set 1 • In the following 
we will describe an intermediate form due to [6], which we here call balancing. A 
theoretical analysis of the implications of this idea can be found in [7]. 

Suppose that after training we receive a new set of Ptest test patterns for which we 
do not know the true targets [II, but can calculate the network output OJ for each 
network i. We give each network a weighting factor aj and define the prediction of 
all networks on pattern 1/ as the weighted average 

nrun 
-II _ ~ -II 
m = L- ajOi . 

i=1 

The goal is to find the weighting factors aj, subject to the constraints 

nrun 

L aj = 1 and aj ~ 0 Vj , 

j=1 

yielding the smallest possible generalization error 

1 Ptest 

E - ~ ( - II t-II) 2 
test = -- L- m - . 

Ptest 11:1 

(1) 

The problem, of course, is our ignorance about the targets [II. Bagging simply takes 
ai = l/nrun for all networks, whereas bumping implies aj = din. with 

1 Pd .. t .. 

K. argmin -- L (or - t JJ )2 . 
j Pdata JJ=1 

As in [6, 7] we write the generalization error in the form 

E test _1_ L L ajaj(or - [1I)(oj - [II) 
Ptest .. II I,) 

2p1 L L ajaj [(or - [11)2 + (oj - ill)2 - (or - oj)2] 
test II j ,j 

L ajaj [Etest(i) + Etest(j) - ~ L(or - 5j )2]. (2) 
. . Ptest IJ II 

The last term depends only on the network outputs and can thus be calculated. 
This "ambiguity" term favors networks with conflicting outputs. The first part, 

lThe idea behind bumping is more general and involved than discussed here. The 
interested reader is referred to [8] . In this paper we will only consider its naive version. 
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containing the generalization errors Etest(i) for individual networks, depends on the 
targets tV and is thus unknown. It favors networks that by themselves already have 
a low generalization error. In the next section we will find reasonable estimates for 
these generalization errors based on the network performances on validation data. 
Once we have obtained these estimates, finding the optimal weighting factors Cti 

under the constraints (1) is a straightforward quadratic programming problem. 

3 ESTIMATING THE GENERALIZATION ERROR 

At first sight, a good estimate for the generalization error of network i could be 
the performance on the validation data not included during training. However, 
the validation error Evalidation (i) strongly depends on the accidental subdivision in 
training and validation set. For example, if there are a few outliers which, by pure 
coincidence, are part of the validation set, the validation error will be relatively 
large and the training error relatively small. To correct for this bias as a result 
of the random subdivision, we introduce the "expected" validation error for run i. 
First we define nil as the number of runs in which pattern J.l is part of the validation 
set and E~alidation as the error averaged over these runs: 

nrun 1 nrun 

nil == L qf and E~alidation == nil ?= qf rf , 
i=1 .=1 

The expected validation error then follows from 

, 1 Pda.ta. 

Evalidation (i) == --:- L qf E~alidation . 
P. 11=1 

The ratio between the observed and the expected validation error indicates whether 
the validation error for network i is relatively high or low. Our estimate for the 
generalization error of network i is this ratio multiplied by an overall scaling factor 
being the estimated average generalization error: 

E (.) 1 Pda.ta. 
E (.) ~ validation t __ '"" Ell. . 

test t , . ~ validation' 
Evalidation (t) Pdata 11=1 

Note that we implicitly make the assumption that the bias introduced by stopping 
at the minimal error on the validation patterns is negligible, i.e., that the validation 
patterns used for stopping a network can be considered as new to this network as 
the completely independent test patterns. 

4 SIMULATIONS 

We compare the following methods for combining neural network outputs. 

Individual: the average individual generalization error, i.e., the generalization er­
ror we will get on average when we decide to perform only one run. It 
serves as a reference with which the other methods will be compared. 

Bumping: the generalization of the network with the lowest error on the data 
available for training and stopping. 
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unfair unfair 

bumping bagging ambiguity balancing bumping balancing 

store 1 4% 9% 10% 17 % 17 % 24 % 

store 2 5% 15 % 22 % 23 % 23 % 34 % 

store 3 -7 % 11% 18 % 25 % 25 % 36 % 

store 4 6% 11% 17 % 26 % 26 % 31 % 

store 5 6% 10% 22 % 19 % 22 % 26 % 

store 6 1% 8% 14 % 19 % 16 % 26 % 

mean 3% 
) 

11% 17 % 22 % 22 % 30 % 

Table 1: Decrease in generalization error relative to the average individual general­
ization error as a result of several methods for combining neural networks trained 
to predict the sales figures for several stores. 

Bagging: the generalization error when we take the average of all n run network 
outputs as our prediction. 

Ambiguity: the generalization error when the weighting factors are chosen to max­
imize the ambiguity, i.e., taking identical estimates for the individual gen­
eralization errors of all networks in expression (2). 

Balancing: the generalization error when the weighting factors are chosen to min­
imize our estimate of the generalization error. 

Unfair bumping: the smallest generalization error for an individual error, i.e., the 
result of bumping if we had indeed chosen the network with the smallest 
generalization error. 

Unfair balancing: the lowest possible generalization error that we could obtain if 
we had perfect estimates of the individual generalization errors. 

The last two methods, unfair bumping and unfair balancing, only serve as some 
kind of reference and can never be used in practice. 

We applied these methods on a real-world problem concerning the prediction of 
sales figures for several department stores in the Netherlands. For each store, 100 
networks with 4 hidden units were trained and stopped on bootstrap samples of 
about 500 patterns. The test set, on which the performances of the various methods 
for combination were measured, consists of about 100 patterns. Inputs include 
weather conditions, day of the week, previous sales figures, and season. The results 
are summarized in Table 1, where we give the decrease in the generalization error 
relative to the average individual generalization error. 

As can be seen in Table 1, bumping hardly improves the performance. The reason 
is that the error on the data used for training and stopping is a lousy predictor of 
the generalization error, since some amount of overfitting is inevitable. The general­
ization performance obtained through bagging, i.e., first averaging over all outputs, 
can be pro"en to be always better than the average individual generalization error. 
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Figure 1: Decrease of generalization error relative to the average individual gen­
eralization error as a function of the number of bootstrap replicates for different 
combination methods: bagging (dashdot , star), ambiguity (dotted, star), bumping 
(dashed, star), balancing (solid, star) , unfair bumping (dashed, circle), unfair bal­
ancing (solid, circle). Shown are the mean (left) and the standard deviation (right) 
of the decrease in percentages. Networks are trained and tested on the Boston 
housing database. 

On these data bagging is definitely better than bumping, but also worse than max­
imizing the ambiguity. In all cases, except for store 5 where maximization of the 
ambiguity is slightly better, balancing is a clear winner among the "fair" methods . 
The last column in Table 1 shows how much better we can get if we could find more 
accurate estimates for the generalization errors of individual networks. 

The method of balancing discards most of the networks, i.e., the solution to the 
quadratic programming problem (2) under constraints (1) yields just a few weighting 
factors different from zero (on average about 8 for this set of simulations). Balancing 
is thus indeed a compromise between bagging, taking all networks into acount , and 
bumping, keeping just one network. 

We also compared these methods on the well-known Boston housing data set con­
cerning the median housing price in several tracts based on 13 mainly socio-economic 
predictor variables (see e.g. [1] for more information). We left out 50 of the 506 
available cases for assessment of the generalization performance. All other 456 cases 
were used for training and stopping neural networks with 4 hidden units. The av­
erage individual mean squared error over all 300 bootstrap runs is 16.2, which is 
comparable to the mean squared error reported in [1]. To study how the perfor­
mance depends on the number of bootstrap replicates , we randomly drew sets of 
n = 5,10,20,40 and 80 bootstrap replicates out of our ensemble of 300 replicates 
and applied the combination methods on these sets. For each n we did this 48 
times. Figure 1 shows the mean decrease in the generalization error relative to the 
average individual generalization error and its standard deviation . 

Again, balancing comes out best , especially for a larger number of bootstrap repli­
cates. It seems that beyond say 20 replicates both bumping and bagging are hardly 
helped by more runs, whereas both maximization of the ambiguity and balancing 
still increase their performance. Bagging, fully taking into account all network pre-
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dictions, yields the smallest variation, bumping, keeping just one of them, by far the 
largest. Balancing and maximization of the ambiguity combine several predictions 
and thus yield a variation that is somewhere in between. 

5 CONCLUSION AND DISCUSSION 

Balancing, a compromise between bagging and bumping, is an attempt to arrive 
at better performances on regression problems. The crux in all this is to obtain 
reasonable estimates for the quality of the different networks and to incorporate 
these estimates in the calculation of the proper weighting factors (see [5, 9] for 
similar ideas and related work in the context of stacked generalization). 

Obtaining several estimators is computationally expensive. However, the notorious 
instability offeedforward neural networks hardly leaves us a choice. Furthermore, an 
ensemble of bootstrapped neural networks can also be used to deduce (approximate) 
confidence and prediction intervals (see e.g. [4]), to estimate the relevance of input 
fields and so on. It has also been argued that combination of several estimators 
destroys the structure that may be present in a single estimator [8]. Having hardly 
any interpretable structure, neural networks do not seem to have a lot they can lose. 
It is a challenge to show that an ensemble of neural networks does not only give 
more accurate predictions, but also reveals more information than a single network. 
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