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Abstract 

We develop a recursive node-elimination formalism for efficiently 
approximating large probabilistic networks. No constraints are set 
on the network topologies. Yet the formalism can be straightfor­
wardly integrated with exact methods whenever they are/become 
applicable. The approximations we use are controlled: they main­
tain consistently upper and lower bounds on the desired quantities 
at all times. We show that Boltzmann machines, sigmoid belief 
networks, or any combination (i.e., chain graphs) can be handled 
within the same framework. The accuracy of the methods is veri­
fied experimentally. 

1 Introduction 

Graphical models (see, e.g., Lauritzen 1996) provide a medium for rigorously em­
bedding domain knowledge into network models. The structure in these graphical 
models embodies the qualitative assumptions about the independence relationships 
in the domain while the probability model attached to the graph permits a consis­
tent computation of belief (or uncertainty) about the values of the variables in the 
network. The feasibility of performing this computation determines the ability to 
make inferences or to learn on the basis of observations. The standard framework 
for carrying out this computation consists of exact probabilistic methods (Lauritzen 
1996). Such methods are nevertheless restricted to fairly small or sparsely connected 
networks and the use of approximate techniques is likely to be the rule for highly 
interconnected graphs of the kind studied in the neural network literature. 

There are several desiderata for methods that calculate approximations to posterior 
probabilities on graphs. Besides having to be (1) reasonably accurate and fast to 
compute, such techniques should yield (2) rigorous estimates of confidence about 
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the attained results; this is especially important in many real-world applications 
(e.g., in medicine). Furthermore, a considerable gain in accuracy could be obtained 
from (3) the ability to use the techniques in conjunction with exact calculations 
whenever feasible. These goals have been addressed in the literature with varying 
degrees of success. For inference and learning in Boltzmann machines, for example, 
classical mean field approximations (Peterson & Anderson, 1987) address only the 
first goal. In the case of sigmoid belief networks (Neal 1992), partial solutions have 
been provided to the first two goals (Dayan et al. 1995; Saul et al. 1996; Jaakkola 
& Jordan 1996). The goal of integrating approximations with exact techniques 
has been introduced in the context of Boltzmann machines (Saul & Jordan 1996) 
but nevertheless leaving the solution to our second goal unattained. In this paper, 
we develop a recursive node-elimination formalism that meets all three objectives 
for a powerful class of networks known as chain graphs (see, e.g., Lauritzen 1996); 
the chain graphs we consider are of a restricted type but they nevertheless include 
Boltzmann machines and sigmoid belief networks as special cases. 

We start by deriving the recursive formalism for Boltzmann machines. The results 
are then generalized to sigmoid belief networks and the chain graphs. 

2 Boltzmann machines 

We begin by considering Boltzmann machines with binary (Ojl) variables. We 
assume the joint probability distribution for the variables S = {SI,' .. , Sn} to be 
given by 

1 
Pn(Slh, J) = Zn(h, J) Bn(Slh, J) (1) 

where hand J are the vector of biases and weights respectively, and the Boltzmann 
factor B has the form 

(2) 

The partition function Zn(h, J) = Z=s Bn(Slh, J) normalizes the distribution. The 
Boltzmann distribution defined in this manner is tractable insofar as we are able to 
compute the partition function; indeed, all marginal distributions can be reduced 
to ratios of partition functions in different settings. 

We now turn to methods for computing the partition function . In special cases 
(e.g., trees or chains) the structure of the weight matrix Jij may allow us to em­
ploy exact methods for calculating Z. Although exact methods are not feasible 
in more generic networks, selective approximations may nevertheless restore their 
utility. The recursive framework we develop provides a general and straightforward 
methodology for combining approximate and exact techniques. 

The crux of our approach lies in obtaining variational bounds that allow the creation 
of recursive node-elimination formulas of the form 1 : 

Zn(h,J) < 
> C(h, J) Zn-l(h, J) (3) 

Such formulas are attractive for three main reasons: (1) a variable (or many at 
the same time) can be eliminated by merely transforming the model parameters (h 
and J); (2) the approximations involved in the elimination are controlled, i.e., they 

1 Related schemes in the physics literature (renormalization group) are unsuitable here 
as they generally don't provide strict upper/lower bounds. 
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consistently yield upper or lower bounds at each stage of the recursion; (3) most 
importantly, if the remaining (simplified) partition function Zn-l(h, j) allow the 
use of exact methods, the corresponding model parameters hand j can simply be 
passed on to such routines. 

Next we will consider how to obtain the bounds and outline their implications. Note 
that since the quantities of interest are predominantly ratios of partition functions, 
it is the combination of upper and lower bounds that is necessary to rigorously 
bound the target quantities. This applies to parameter estimation as well even if 
only a lower bound on likelihood of examples is used; such likelihood bound relies 
on both upper and lower bounds on partition functions. 

2.1 Simple recursive factorizations 

We start by developing a lower bound recursion. Consider eliminating the variable 
Si: 

Zn(h,J) LBn(Slh,J) = L LBn(Slh,J) (4) 
S S\S, S, 

L (1 + eh,+L::, J,jSj)Bn_l(S \ Sil h , J) (5) 
S\Si 

> L el',(h,+L:: j J,jSj)+H(I'.) Bn-l(S \ Silh, J) (6) 
S\S, 

el',h,+H(I',) L Bn- 1(S \ Si Ih, J) (7) 
S\S, 

el',hi+H (l'i) Zn-l(h, J) (8) 

where hi = hi + l'iJii for j =j:. i, H(·) is the binary entropy function and I'i are free 
parameters that we will refer to as "variational parameters." The variational bound 
introduced in eq. (6) can be verified by a direct maximization which recovers the 
original expression. This lower bound recursion bears a connection to mean field 
approximation and in particular to the structured mean field approximation studied 
by Saul and Jordan (1996).2 

Each recursive elimination translates into an additional bound and therefore the 
approximation (lower bound) deteriorates with the number of such iterations. It 
is necessary, however, to continue with the recursion only to the extent that the 
prevailing partition function remains unwieldy to exact methods. Consequently, 
the problem becomes that of finding the variables the elimination of which would 
render the rest of the graph tractable. Figure 1 illustrates this objective. Note 
that the simple recursion does not change the connection matrix J for the remain­
ing variables; thus, graphically, the operation translates into merely removing the 
variable. 

The above recursive procedure maintains a lower bound on the partition function 
that results from the variational representation introduced in eq. (6). For rigorous 

2Each lower bound recursion can be shown to be equivalent to a mean field approx­
imation of the eliminated variable(s). The structured mean field approach of Saul and 
Jordan (1996) suggests using exact methods for tractable substructures while mean field 
for the variables mediating these structures. Translated into our framework this amounts 
to eliminating the mediating variables through the recursive lower bound formula with a 
subsequent appeal to exact methods. The connection is limited to the lower bound. 
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Figure 1: Enforcing tractable networks. Each variable in the graph can be removed 
(in any order) by adding the appropriate biases for the existing adjacent variables. 
The elimination of the dotted nodes reveals a simplified graph underneath. 

bounds we need an upper bound as well. In order to preserve the graphical inter­
pretation of the lower bound, the upper bound should also be factorized. With this 
in mind, the bound of eq. (6) can be replaced with 

(9) 

where 
(10) 

for j > 0, ho = f(h i ), f(x) = log(1 + eX), and qj are variational parameters such 
that Lj qj = 1. The derivation of this bound can be found in appendix A. 

2.2 Refined recursive bound 

If the (sub )network is densely or fully connected the simple recursive methods pre­
sented earlier can hardly uncover any useful structure. Thus a large number of 
recursive steps are needed before relying on exact methods and the accuracy of 
the overall bound is compromised. To improve the accuracy, we introduce a more 
sophisticated variational (upper) bound to replace the one in eq. (6). By denoting 
Xi = hi + Lj Jij Sj we have: 

1 + eX. ::; ex./2+>.(x.)X~-F(>'.Xi) (11) 

The derivation and the functional forms of A(Xi) and F(A, Xi) are presented in 
appendix B. We note here, however, that the bound is exact whenever Xi = Xi. In 
terms of the recursion we obtain 

Zn(h,J) < eh./2+>.(x.)h~-F(>'.Xi) Zn-l(h, J) (12) 

where 

h· 3 hj + 2hjA(Xi)Jij + Ji j/2 + A(Xi)Ji} (13) 

Jjk Jjk + 2A(Xi)JjJik (14) 

for j 1= k 1= i . Importantly and as shown in figure 2a, this refined recursion 
imposes (qualitatively) the proper structural changes on the remaining network: the 
variables adjacent to the eliminated (or marginalized) variable become connected. 
In other words, if Jij 1= 0 and hk 1= 0 then Jjk 1= 0 after the recursion. 

To substantiate the claim of improved accuracy we tested the refined upper bound 
recursion against the factorized lower bound recursion in random fully connected 
networks with 8 variables3 . The weights in these networks were chosen uniformly 
in the range [-d, d) and all the initial biases were set to zero. Figure 3a plots the 
relative errors in the log-partition function estimates for the two recursions as a 

3The small network size was chosen to facilitate comparisons with exact results. 
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Figure 2: a) The graphical changes in the network following the refined recursion 
match those of proper marginalization. b) Example of a chain graph. The dotted 
ovals indicate the undirected clusters. 
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Figure 3: a) The mean relative errors in the log-partition function as a function of 
the scale of the random weights (uniform in [-d, dJ). Solid line: factorized lower 
bound recursion; dashed line: refined upper bound. b) Mean relative difference 
between the upper and lower bound recursions as a function of dJn/8, where n is 
the network size. Solid: n = 8; dashed: n = 64; dotdashed: n = 128. 

function of the scale d. Figure 3b reveals how the relative difference between the 
two bounds is affected by the network size. In the illustrated scale the size has little 
effect on the difference. We note that the difference is mainly due to the factorized 
lower bound recursion as is evident from Figure 3a. 

3 Chain graphs and sigmoid belief networks 

The recursive bounds presented earlier can be carried over to chain graphs4. An 
example of a chain graph is given in figure 2b. The joint distribution for a chain 
graph can written as a product of conditional distributions for clusters of variables: 

Pn(SIJ) = II p(Sk Ipa[k], hk, Jk) (15) 
k 

where Sk = {SdiECk is the set of variables in cluster k. In our case, the conditional 
probabilities for each cluster are conditional Boltzmann distributions given by 

p(Sk I [k] hk Jk) = B(Sk Ih~, Jk) 
pa " Z(h~,Jk) (16) 

where the added complexity beyond that of ordinary Boltzmann machines is that 
the Boltzmann factors now include also outside cluster biases: 

[h~]i = hf + L Ji~· out Sj (17) 
j~Ck 

4While Boltzmann machines are undirected networks (interactions defined through po­
tentials), sigmoid networks are directed models (constructed from conditional probabili­
ties). Chain graphs contain both directed and undirected interactions. 
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where the index i stays within the kth cluster. We note that sigmoid belief networks 
correspond to the special case where there is only single binary variable in each 
cluster; Boltzmann machines, on the other hand, have only one cluster. 

We now show that the recursive formalism can be extended to chain graphs. This 
is achieved by rewriting or bounding the conditional probabilities in terms of vari­
ational Boltzmann factors. Consequently, the joint distribution - being a prod­
uct of the conditionals - will also be a Boltzmann factor. Computing likelihoods 
(marginals) from such a joint distribution amounts to calculating the value of a 
particular partition function and therefore reduces to the case considered earlier. 

It suffices to find variational Boltzmann factors that bound (or rerepresent in some 
cases) the cluster partition functions in the conditional probabilities. We observe 
first that in the factorized lower bound or in the refined upper bound recursions, the 
initial biases will appear in the resulting expressions either linearly or quadratically 
in the exponent5 . Since the initial biases for the clusters are of the form of eq. (17), 
the resulting expressions must be Boltzmann factors with respect to the variables 
outside the cluster. Thus, applying the recursive approximations to each cluster 
partition function yields an upper/lower bound in the form of a Boltzmann factor. 
Combining such bounds from each cluster finally gives upper/lower bounds for the 
joint distribution in terms of variational Boltzmann factors. 

We note that for sigmoid belief networks the Boltzmann factors bounding the joint 
distribution are in fact exact variational translations of the true joint distribution. 
To see this, let us denote Xi = L: Jij Sj + hi and use the variational forms, for 
example, from eq. (6) and (11): 

O'(Xi) = (1 + e- X • )-1 < el1 •Xi - H (l1i) 

> eXi/2->'(Xi)X~+F(>.,Xi) 

(18) 

(19) 

where the sigmoid function 0'(.) is the inverse cluster partition function in this case. 
Both the variational forms are Boltzmann factors (at most quadratic in Xi in the 
exponent) and are exact if minimized/maximized with respect to the variational 
parameters. 

In sum, we have shown how the joint distribution for chain graphs can be bounded 
by (translated into) Boltzmann factors to which the recursive approximation for­
malism is again applicable. 

4 Conclusion 

To reap the benefits of probabilistic formulations of network architectures, approx­
imate methods are often unavoidable in real-world problems. We have developed a 
recursive node-elimination formalism for rigorously approximating intractable net­
works. The formalism applies to a large class of networks known as chain graphs 
and can be straightforwardly integrated with exact probabilistic calculations when­
ever they are applicable. Furthermore, the formalism provides rigorous upper and 
lower bounds on any desired quantity (e.g., the variable means) which is crucial in 
high risk application domains such as medicine. 

bThis follows from the linearity of the propagation rules for the biases, and the fact 
that the emerging prefactors are either linear or quadratic in the exponent. 
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A Factorized upper bound 

The bound follows from the convexity of f( x) = loge 1 + eX) and from an application 
of Jensen's inequality. Let fk(x) = I(x + hk) and note that Ik(X) has the same 
convexity properties as I. For any convex function Ik then we have (by Jensen's 
inequality) 

Ik (L.ilkiSi) = Ik (L.i% lki~i) :::; ~qilk (lkj~i) 
q) i q) 

(20) 

By rewriting Ik (Jk;jSj) = Si [/A: ( ~) - Ik(O)] + Ida) we get the desired result . 

B Refined upper bound 

To derive the upper bound consider first 

1 + eX = exj2 + log(e- x / 2 + eX/ 2 ) (21) 

Now, g(x) = log(e-x / 2 + ex / 2 ) is a symmetric function of x and also a concave 
function of x 2 . Any tangent line for a concave function always remains above the 
function and so it also serves as an upper bound. Therefore we may bound g(x) by 
the tangents of g(.,fY) (due to the concavity in x 2 ). Thus 

where 

log(e- x / 2 + eX / 2 ) < ag~v:) (x 2 - y) + g(.JY) (22) 

A(y) 

F(A, y) 

A(Y)X2 - F(A, y) (23) 

a 
ayg( .JY) 

A(y) y - g(.JY) 

(24) 

(25) 

The desired result now follows the change of variables: y = xl- Note that the 
tangent bound is exact whenever Xi = x (a tangent defined at that point) . 


