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Abstract

This paper develops arguments for a family of temporal log-linear models
to represent spatio-temporal correlations among the spiking events in a
group of neurons. The models can represent not just pairwise correlations
but also correlations of higher order. Methods are discussed for inferring
the existence or absence of correlations and estimating their strength.

A frequentist and a Bayesian approach to correlation detection are

compared. The frequentist method is based on G? statistic with estimates
obtained via the Max-Ent principle. In the Bayesian approach a Markov

Chain Monte Carlo Model Composition MC3) algorithm is applied to
search over connectivity structures and Laplace's method is used to
approximate their posterior probability. Performance of the methods was
tested on synthetic data. The methods were applied to experimental data
obtained by the fourth author by means of measurements carried out on
behaving Rhesus monkeys at the Hadassah Medical School of the Hebrew
University. As conjectured, neural connectivity structures need not be
neither hierarchical nor decomposable.
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1 INTRODUCTION

Hebb conjectured that information processing in the brain is achieved through the
collective action of groups of neurons, which he called cell assemblies (Hebb, 1949). His
followers were left with a twofold challenge:

¢ to define cell assemblies in an unambiguous way.

e to conceive and carry out the experiments that demonstrate their existence.

Cell assemblies have been defined in various sometimes conflicting ways, both in terms of
anatomy and of shared function. One persistent approach characterizes the cell assembly
by near-simultaneity or some other specific timing relation in the firing of the involved
neurons. If two neurons converge on a third one, their synaptic influence is much larger
for near-coincident firing, due to the spatio-temporal summation in the dendrite
(Abeles,1991; Abeles et al. 1993). Thus syn-firing is directly available to the brain as a
potential code,

The second challenge has led physiologists to develop methods to observe the
simultaneous activity of individual neurons to seek evidence for spatio-temporal patterns.
It is now possible to obtain multi-unit recordings of up to 100 neurons in awake behaving
animals. In the data we analyze, the spiking events (in the 1 msec range) are encoded as
sequences of 0's and 1's, and the activity of the whole group is described as a sequence of
binary configurations. This paper presents a statistical model in which the parameters
represent spatio-temporal firing patterns. We discuss methods for estimating these
pararameters and drawing inferences about which interactions are present.

2 PARAMETERS FOR SPATIO-TEMPORAL FIRING PATTERNS

The term spatial correlation has been used to denote synchronous firing of a group of
neurons, while the term temporal correlation has been used to indicate chains of firing
events at specific temporal intervals. Terms like "couple" or "triplet" have been used to
denote spatio-temporal patterns of two or three neurons (Abeles et al., 1993; Griin, 1996)
firing simultaneously or in sequence. Establishing the presence of such patterns is not
straightforward. For example, three neurons may fire together more often than expected
by chance' without exhibiting an authentic third order interaction. This phenomenon may
be due, for instance, to synchronous firing of two couples out of the three neurons.
Authentic triplets, and, in general, authentic n-th order correlations, must therefore be
distinguished from correlations that can be explained in terms of lower order interactions.
In what follows, we present a parameterized model that represents a spatio-temporal
correlation by a parameter that depends on the involved neurons and on a set of time
intervals, where synchronization is characterized by all time intervals being zero.

Assume that the sequence of configurations X, = ( X,;,,.~**,X,y,/ of N neurons forms a
Markov chain of order #. Let O be the time step, and denote the conditional distribution

for X, given previous configurations by p(?gt |zr,"a,,5”_25),.‘.,2{“_,5) ). We

assume that all transition probabilities are strictly positive and expand the logarithm of
the conditional distribution as:

! that is to say, more often than predicted by the null hypothesis of independence.
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POX | X15) Xit-25) - Xitrs) ) = c2p{ 6y + 2 0, XA} )

AeZ

where each A is a subset of pairs of subscripts of the form (,7 — 50) that includes at

least one pair of the form (#,#). Here X A= IT .Jlt(f.J i85 denotes the event that all
1<j<k R

neurons in A are active. The set = C 2”of all subsets for whichQA is non-zero is
called the interaction structure for the distribution p. The effect QA is called the
interaction strength for the interaction on subset A. Clearly, 8, =0 is equivalent to
A ¢Z and is taken to indicate absence of an order-| A | interaction among neurons in
A. We denote the structure-specific vector of non-zero interaction strengths by QE.
Consider aset A of N binary neurons and denote by p the probability distribution on
the binary configurations of A.

DEFINITION 1: We say that neurons (i,,1,,..1, / exhibit a spatio-temporal
pattern if there is a set of time intervals 1,6,m,0,..,m, 6 with at least one

m, =0, such that 6, #0 in Equation (1), where

A={i, t-md)..(i,t—-m)}.

DEFINITION 2: A subset (i,,i,,.,1,/ of neurons exhibits a synchronization or

spatial correlation if GA #0 for A= {(!'1,0),...,(1',‘,0)}.

In the case of absence of any temporal dependencies the configurations are independent and
we drop the time index:

p(x)=ep(6,+%0,X,/ )
where A is any nonempty subset of A and X o= Tl
ieA
Of course (2) is unrealistic. Temporal correlation of some kind is always present, one
such example being the refractory period after firing. Nevertheless, (2) may be adequate in
cases of weak temporal correlation.  Although the models (1) and (2) are statistical not
physiological, it is an established conjecture that synaptic connection between two

neurons will manifest as a non-zero 6 » for the corresponding set A in the temporal
model (1). Another example leading to non-zero 7, A Will be simultaneous activation of

the neurons in A due to a common input, as illustrated in Figure 1 below. Such a 6 A

will appear in model (1) with time intervals equal to 0. An attractive feature of our
models is that it is capable of distinguishing between cases a. and b. of Figure 1. This
can be seen by extending the model (2) to include the external neurons (H in case a., H,K
in case b.) and then marginalizing. An information-theoretic argument supports the

choice of @ s 0 as a natural indicator of an onder—| A l interaction among the neurons

in A. Assume that we are in the case of no temporal correlation. The absence of
interaction of order | A |
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a. Figure 1 b.

among neurons in A should be taken to mean that the distribution is determined by the

marginal distributions on proper subsets of A. A well established criterion for selecting
a distribution among those matching the lower order marginals fixed by proper subsets of

A, is Max-Ent. According to the Max-Ent principle the distribution that maximizes
entropy is the one which is maximally non-committal with regard to missing information.
The probability distribution pP* that maximizes entropy among distributions with the

same marginals as the distribution P on proper subsets of A has a log-linear

expansion in which only 0, Bc A B# A can possibly be non-zero.”

3 THE FREQUENTIST APPROACH

We treat here the case of no temporal dependencies. The general case is treated in
Martignon-Deco,1997; Deco-Martignon,1997. We also assume that our data are

stationary. We test the presence of synchronization of neurons in A by the following
procedure: we condition on silence of neurons in the complement of A in A and call the
resulting frequency distribution p . We construct the Max-Ent model determined by the
marginals of p on proper subsets of A. The well-known method for constructing this

type of Max-Ent models is the .LP.F.P. Algorithm (Bishop et al.,1975). We propose
here another simpler and quicker procedure:

If B is a subset of A, denote by ¥ 5 the configuration that has a component 1 for

every index in B and O elsewhere.

Define P*( X ) = p(ZB )+ (—I)IBI A, where A is to be determined by solving for
= 0, where 6 *4 is the coefficient corresponding to A in the log-expansion of p*.

As can be shown (Martignon et al, 1995), € *,can be written as

2 This was observed by J. Good in 1963 (Bishop et al. 1975). It is interesting to note that p“‘
minimizes the Kullback-Leibler distance from P in the manifold of distributions with a log-

linear expansion in which only @5, B C A,B# A can possibly be non-zero.
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g5 =X (=1)4-B 4, p*( Xy /). The distribution p * maximizes entropy among those
BcA

with the same marginals of p on proper subsets of A.” We use p* as estimate of p for

tests by means of G2 statistic (Bishop et al., 1975).

4 THE BAYESIAN APPROACH

We treat here the case of no temporal dependencies. The general case is treated in Laskey-
Martignon, 1997. Information about p( x) prior to observing any data is represented by

a joint probability distribution called the prior distribution over = and the O's.
Observations are used to update this probability distribution to obtain a posterior
distribution over structures and parameters. The posterior probability of a cluster A can
be interpreted as the probability that the » nodes in cluster A exhibit a degree-r

interaction. The posterior distribution for 7] ,represents structure-specific information

about the magnitude of the interaction. The mean or mode of the posterior distribution
can be used as a point estimate of the interaction strength; the standard deviation of the
posterior distribution reflects remaining uncertainty about the interaction strength.

We exhibit a family of log-linear models capable of capturing interactions of all
orders. An algorithm is presented for learning both structure and parameters in a unified
Bayesian framework. Each model structure specifies a set of clusters of nodes, and
structure-specific parameters represent the directions and strengths of interactions among
them. The Bayesian learning algorithm gives high posterior probability to models that
are consistent with the data. Results include a probability, given the observations, that a
set of neurons fires simultaneously, and a posterior probability distribution for the
strength of the interaction, conditional on its occurrence.

The prior distribution we used has two components. The first component assigns a prior
probability to each structure. In our model, interactions are independent of each other and
each interaction has a probability of .1. This reflects the prior expectation that not many
interactions are expected to be present. The second component of the prior distribution is
the conditional distribution of interaction strengths given the structure. If an interaction is

not in the structure, the corresponding strength parameter ) 4 1s taken to be identically

zero given structure =. Al interactions belonging to = are taken to be independent and
normally distributed with mean zero and standard deviation 2. This reflects the prior
expectation that interaction strength magnitudes are rarely larger than 4 in absolute value.

Computing the posterior probability of a structure ) requires integrating out of the

joint mass-density function of the structure X, the interaction strength 6 4> and the

data X. The solution to this integral cannot be obtained in closed form. We use
Laplace's method (Kass-Raftery, 1995; Tierney-Kadane,1986) to estimate the posterior

probability of structures. The posterior distribution of 6 4 given frequency data also

3 This is due to the fact that there is a unique distribution with the same marginals of pon

proper subsets of A such that the coefficient corresponding to A in its log-expansion
is zero.
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cannot be obtained in closed form. We use the mode of the posterior distribution as a
point estimate of 6 4~ The standard deviation of 6, , which indicates how precisely BA
can be estimated from the given data, is estimated using a normal approximation to the
posterior distribution (Laskey-Martignon, 1997). The covariance matrix of the @ PR
estimated as the inverse Fisher information matrix evaluated at the mode of the posterior
distribution. The posterior probability of an interaction O 41S the sum over the posterior

probabilities of all structures containing A. We used a Markov chain Monte Carlo Model
Composition algorithm (MC") to search over structures. This stochastic algorithm
converges to a stationary distribution in which structure = is visited with probability
equal to its posterior probability. We ran the MC? algorithm for 15,000 runs and
estimated the posterior probability of a structure as its frequency of occurrence over the
15,000 runs. We estimated interaction strength parameters and standard deviations using
only the 100 highest-probability structures. Although the number of possible structures
is astronomical, typically most of the posterior probability is contained in relatively few
structures. We found this to be the case, which justifies using only the most probable
structures to estimate interaction strength parameters.

5 RESULTS

We applied our models to data from an experiment in which spiking events among groups
of neurons were analyzed through multi-unit recordings of 6-16 units in the frontal cortex
of Rhesus monkeys. The monkeys were trained to localize a source of light and, after a
delay, to touch the target from which the light blink was presented. At the beginning of
each trial the monkeys touched a "ready-key", then the central ready light was turned on.
Later, a visual cue was given in the form of a 200-ms light blink coming from either the
left or the right. Then, after a delay of 1 to 32 seconds, the color of the ready light
changed from red to orange and the monkeys had to release the ready key and touch the
target from which the cue was given. The spiking events (in the 1 millisecond range) of
each neuron were encoded as a sequence of zeros and ones, and the activity of the group
was described as a sequence of configurations of these binary states. The fourth author
provided data corresponding to piecewise stationary segments of the trials, which presented
weak temporal correlation, corresponding to intervals of 2000 milliseconds around the
ready-signal. He adjoined these 94 segments and formed a data-set of 188,000 msec. The
data were then binned in time windows of 40 milliseconds. The criterion we used to fix
the binwidth was robustness with regards to variations of the offsets. We selected a subset
of eight of the neurons for which data were recorded. We analyzed recordings prior to the
ready-signal separately from data recorded after the ready-signal. Each of these data sets is
assumed to consist of independent trials from a model of the form (2).

[Cluster Posterior prob. Posterior prob. MAP estimate of Standard Slgmﬁcance

A of A of A 6 deviation of

(frequency) | (best g 0

100models) 1
6.8 9 .89 0.47 0.11 4.0853
4,5,6,7 .30 0.32 2.30 0.64 No
,3,6 40 0.38 2.30 0.64 2.35

1,34 close to prior close to prior 4.7

Tablel: results for pre-ready signal data. Effects with posterior prob. > 0.1
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Cluster Posterior prob. Posterior prob. MAP estimate of | Standard Signiﬁancc

A of A of A ") deviation of

(frequency) | (best 100 A 0

models) A

5.6 19 0.96 1.00 027 1.82
4,7 246 0.18 0.93 0.34 2.68
1,4,5,6 0.18 0.13 1.06 0.36 No
1,3,4,6,7 0.24 0.17 2.69 0.13 No

Table2:results for post-ready signal data. Effects with posterior prob >0.1

Another set of data from 5 simulated neurons was provided by the fourth author for a
double-check of the methods. Only second order correlations had been simulated: a
synapse lasting 2 msec, an inhibitory common input, and two excitatory common inputs.
The Bayesian method was very accurate, detecting exactly the simulated interactions.
The frequentist method made one mistake. Other data sets with temporal correlations
have also been analyzed. By means of the frequentist approach on shifted data, temporal
triplets have been detected and even fourth order correlations. Temporal correlograms are
computed for shifts of up to 50 msec (Martignon-Deco, 1997).
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