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Abstract 
The genetic algorithm (GA) is a heuristic search procedure based on mechanisms 
abstracted from population genetics. In a previous paper [Baluja & Caruana, 1995], 
we showed that much simpler algorithms, such as hillcIimbing and Population­
Based Incremental Learning (PBIL), perform comparably to GAs on an optimiza­
tion problem custom designed to benefit from the GA's operators. This paper 
extends these results in two directions. First, in a large-scale empirical comparison 
of problems that have been reported in GA literature, we show that on many prob­
lems, simpler algorithms can perform significantly better than GAs. Second, we 
describe when crossover is useful, and show how it can be incorporated into PBIL. 

1 IMPLICIT VS. EXPLICIT SEARCH STATISTICS 

Although there has recently been controversy in the genetic algorithm (GA) community as 
to whether GAs should be used for static function optimization, a large amount of research 
has been, and continues to be, conducted in this direction [De Jong, 1992]. Since much of 
GA research focuses on optimization (most often in static environments), this study exam­
ines the performance of GAs in these domains. 

In the standard GA, candidate solutions are encoded as fixed length binary vectors. The ini­
tial group of potential solutions is chosen randomly. At each generation, the fitness of each 
solution is calculated; this is a measure of how well the solution optimizes the objective 
function. The subsequent generation is created through a process of selection, recombina­
tion, and mutation. Recombination operators merge the information contained within pairs 
of selected "parents" by placing random subsets of the information from both parents into 
their respective positions in a member of the subsequent generation. The fitness propor­
tional selection works as selective pressure; higher fitness solution strings have a higher 
probability of being selected for recombination. Mutations are used to help preserve diver­
sity in the population by introducing random changes into the solution strings. The GA uses 
the population to implicitly maintain statistics about the search space. The selection, cross­
over, and mutation operators can be viewed as mechanisms of extracting the implicit statis­
tics from the population to choose the next set of points to sample. Details of GAs can be 
found in [Goldberg, 1989] [Holland, 1975]. 

Population-based incremental learning (PBIL) is a combination of genetic algorithms and 
competitive learning [Baluja, 1994]. The PBIL algorithm attempts to explicitly maintain 
statistics about the search space to decide where to sample next. The object of the algorithm 
is to create a real valued probability vector which, when sampled, reveals high quality solu­
tion vectors with high probability. For example, if a good solution can be encoded as a 
string of alternating O's and l's, a suitable final probability vector would be 0.01, 0.99, 
0.01, 0.99, etc. The PBIL algorithm and parameters are shown in Figure 1. 

Initially, the values of the probability vector are initialized to 0.5. Sampling from this vec­
tor yields random solution vectors because the probability of generating a I or 0 is equal. 
As search progresses, the values in the probability vector gradually shift to represent high 
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•••••• Initialize Probability Vector ••••• 

for i :=1 to LENGTH do P[i] = 0.5; 

while (NOT tennination condition) 
..... Generate Samples ..... 

for i := 1 to SAMPLES do 

S. Baluja 

sample_vectors[i] := generate_sample_vector_according_to-probabilities (P); 
evaluations[I] := evaluate(sample_vectors[i)); 

besLvector:= find_vectocwith_besLevaluation (sample_vectors, evaluations); 
worsLvector := find_vectocwith_worsLevaluation (sample_vectors, evaluations); 

••••• Update Probability Vector Towards Best Solution ••••• 

for i :=1 to LENGTH do 
P[i] := P[I] • (1.0 • LA) + besLvector[i] • (LA); 

PBIL: USER DEFINED CONSTANTS (Values Used In this Study): 

SAMPLES: the number of vectors generated before update of the probability vector (100). 

LA: the leaming rate, how fast to exploit the search perfonned (0.1). 

NEGATIVE_LA: negative leaming rate, how much to leam from negative examples (PBIL 1=0.0, PBIL2= 0.075). 

LENGTH: the number of bits In a generated vBCtor (problem specific). 

Figure 1: PBILIIPBIL2 algorithm for a binary alphabet. PBIL2 includes shaded region. Mutations not shown. 

evaluation solution vectors through the following process. A number of solution vectors 
are generated based upon the probabilities specified in the probability vector. The proba­
bility vector is pushed towards the generated solution vector with the highest evaluation. 
After the probability vector is updated, a new set of solution vectors is produced by sam­
pling from the updated probability vector, and the cycle is continued. As the search 
progresses, entries in the probability vector move away from their initial settings of 0.5 
towards either 0.0 or 1.0. 

One key feature of the early generations of genetic optimization is the parallelism in the 
search; many diverse points are represented in the population of points during the early 
generations. When the population is diverse, crossover can be an effective means of 
search, since it provides a method to explore novel solutions by combining different mem­
bers of the population. Because PBIL uses a single probability vector, it may seem to have 
less expressive power than a GA using a full population, since a GA can represent a large 
number of points simultaneously. A traditional single population GA, however, would not 
be able to maintain a large number of points. Because of sampling errors, the population 
will converge around a single point. This phenomenon is summarized below: 

" ... the theorem [Fundamental Theorem of Genetic Algorithms [Goldberg, 1989]], assumes 
an infinitely large population size. In a finite size population, even when there is no selective 
advantage for either of two competing alternatives ... the population will converge to one 
alternative or the other in finite time (De Jong, 1975; [Goldberg & Segrest, 1987]). This 
problem of finite populations is so important that geneticists have given it a special name, 
genetic drift. Stochastic errors tend to accumulate, ultimately causing the population to con­
verge to one alternative or another" [Goldberg & Richardson, 1987]. 

Diversity in the population is crucial for GAs. By maintaining a population of solutions, 
the GA is able-in theory at least-to maintain samples in many different regions. Cross­
over is used to merge these different solutions. A necessary (although not sufficient) con­
dition for crossover to work well is diversity in the popUlation. When diversity is lost, 
crossover begins to behave like a mutation operator that is sensitive to the convergence of 
the value of each bit [Eshelman, 1991]. If all individuals in the population converge at 
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some bit position, crossover leaves those bits unaltered. At bit positions where individuals 
have not converged, crossover will effectively mutate values in those positions. Therefore, 
crossover creates new individuals that differ from the individuals it combines only at the 
bit positions where the mated individuals disagree. This is analogous to PBIL which cre­
ates new trials that differ mainly in positions where prior good performers have disagreed. 

As an example of how the PBIL algorithm works, we can examine the values in the prob­
ability vector through multiple generations. Consider the following maximization prob­
lem: 1.0/1(366503875925.0 - X)I, 0 ~ X < 240. Note that 366503875925 is represented in 
binary as a string of 20 pairs of alternating '01'. The evolution of the probability vector is 
shown in Figure 2. Note that the most significant bits are pinned to either 0 or 1 very 
quickly, while the least significant bits are pinned last. This is because during the early 
portions of the search, the most significant bits yield more information about high evalua­
tion regions of the search space than the least significant bits. 
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Figure 2: Evolution of the probability vector over successive generations. White represents a high 
probability of generating a 1. black represents a high probability of generating a O. Intennediate grey represent 
probabilities close to 0.5 - equal chances of generating a 0 or 1. Bit 0 is the most significant. bit 40 the least. 

2 AN EMPIRICAL COMPARISON 

This section provides a summary of the results obtained from a large scale empirical com­
parison of seven iterative and evolution-based optimization heuristics. Thirty-four static 
optimization problems, spanning six sets of problem classes which are commonly 
explored in the genetic algorithm literature, are examined. The search spaces in these 
problems range from 2128 to 22040. The results indicate that, on many problems, using 
standard GAs for optimizing static functions does not yield a benefit, in terms of the final 
answer obtained, over simple hillclimbing or PBIL. Recently, there have been other stud­
ies which have examined the perfonnance of GAs in comparison to hillclimbing on a few 
problems; they have shown similar results [Davis, 1991][Juels & Wattenberg, 1996]. 

Three variants of Multiple-Restart Stochastic Hillclimbing (MRS H) are explored in this 
paper. The first version, MRSH-l, maintains a list of the position of the bit flips which 
were attempted without improvement. These bit flips are not attempted again until a better 
solution is found. When a better solution is found, the list is emptied. If the list becomes as 
large as the solution encoding, MRSH-l is restarted at a random solution with an empty 
list. MRSH-2 and MRSH-3 allow moves to regions of higher and equal evaluation. In 
MRSH-2, the number of evaluations before restart depends upon the length of the encoded 
solution. MRSH-2 allows 1O*(length of solution) evaluations without improvement 
before search is restarted. When a solution with a higher evaluation is found, the count is 
reset. In MRSH-3, after the total number of iterations is specified, restart is forced 5 times 
during search, at equally spaced intervals. 

Two variants of the standard GA are tested in this study. The first, tenned SGA, has the 
following parameters: Two-Point crossover, with a crossover rate of 100% (% of times 
crossover occurs, otherwise the individuals are copied without crossover), mutation prob­
ability of 0.001 per bit, population size of 100, and elitist selection (the best solution in 
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generation N replaces the worst solution in generation N+ 1). The second GA used, termed 
GA-Scale, uses the same parameters except: uniform crossover with a crossover rate of 
80% and the fitness of the worst member in a generation is subtracted from the fitnesses of 
each member of the generation before the probabilities of selection are determined. 

Two variants of PBIL are tested. Both move the probability vector towards the best exam­
ple in each generated population. PBIL2 also moves the probability vector away from the 
worst example in each generation. Both variants are shown in Figure 1. A small mutation, 
analogous to the mutation used in genetic algorithms, is also used in both PBILs. The 
mutation is directly applied to the probability vector. 

The results obtained in this study should not be considered to be state-of-the-art. The 
problem encodings were chosen to be easily reproducible and to allow easy comparison 
with other studies. Alternate encodings may yield superior results. In addition, no prob­
lem-specific information was used for any of the algorithms. Problem-specific informa­
tion, when available, could help all of the algorithms examined. 

All of the variables in the problems were encoded in binary, either with standard Gray­
code or base-2 representation. The variables were represented in non-overlapping, contig­
uous regions within the solution encoding. The results reported are the best evaluations 
found through the search of each algorithm, averaged over at least 20 independent runs 
per algorithm per problem; the results for GA-SCALE and PBIL2 algorithms are the aver­
age of at least 50 runs. All algorithms were given 200,000 evaluations per run. In each run, 
the GA and PBIL algorithms were given 2000 generations, with 100 function evaluations 
per generation. In each run, the MRSH algorithms were restarted in random locations as 
many times as needed until 200,000 evaluations were performed. The best answer found 
in the 200,000 evaluations was returned as the answer found in the run. 

Brief notes about the encodings are given below. Since the numerical results are not useful 
without the exact problems, relative results are provided in Table I. For most of the prob­
lems, exact results and encodings are in [Baluja, 1995). To measure the significance of the 
difference between the results obtained by PBIL2 and GA-SCALE, the Mann-Whitney 
test is used. This is a non-parametric equivalent to the standard two-sample pooled t-tests. 

• TSP: 128,200 & 255 city problems were tried. The "sort" encoding [Syswerda, 1989] 
was used. The last problem was tried with the encoding in binary and Gray-Code. 

• Jobshop: Two standard JS problems were tried with two encodings. The first encoding is 
described in [Fang et. ai, 1993]. The second encoding is described in [Baluja, 1995]. An addi­
tional, randomly generated, problem was also tried with the second encoding. 

• Knapsack: Problem 1&2: a unique element is represented by each bit. Problem 3&4: there 
are 8 and 32 copies of each element respectively. The encoding specified the number of copies of 
each element to include. Each element is assigned a "value" and "weight". Object: maximize 
value while staying under pre-specified weight. 

• Bin-Packing/EquaI Piles: The solution is encoded in a bit vector of length M * log2N (N 
bins, M elem.). Each element is assigned a substring of length log2N, which specifies a bin. 
Object: pack the given bins as tightly as possible. Because of the large variation in results which is 
found by varying the number of bins and elements, the results from 8 problems are reported. 

• Neural-Network Weight Optimization: Problem 1&2: identify the parity of7 inputs. Prob­
lem 3&4: determine whether a point falls within the middle of 3 concentric squares. For problems 
3&4, 5 extra inputs, which contained noise, were used. The networks had 8 inputs (including 
bias), 5 hidden units, and 1 output. The network was fully connected between sequential layers. 

• Numerical Function Optimization (FI-FJ): Problems 1&2: the variables in the first por­
tions of the solution string have a large influence on the quality of the rest of the solution. In the 
third problem, each variable can be set independently. See [Baluja, 1995] for details. 

• Graph Coloring: Select 1 of 4 colors for nodes of a partially connected graph such that con-
nected nodes are not the same color. The graphs used were not necessarily planar. 
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Table I: Summary of Empirical Results - Relative Ranks (l=best, 7=worst). 

3 EXPLICITL Y PRESERVING DIVERSITY 

Although the results in the previous section showed that PBIL often outperformed GAs 
and hillclimbing, PBIL may not surpass GAs at all population sizes. As the population 
size increases, the observed behavior of a GA more closely approximates the ideal behav­
ior predicted by theory [Holland, 1975]. The population may contain sufficient samples 
from distinct regions for crossover to effectively combine "building blocks" from multiple 
solutions. However, the desire to minimize the total number of function evaluations often 
prohibits the use of large enough populations to make crossover behave ideally. 

One method of avoiding the cost of using a very large population is to use a parallel GA 
(pGA). Many studies have found pGAs to be very effective for preserving diversity for 
function optimization [Cohoon et al., 1988][Whitley et ai., 1990]. In the pGA, a collection 
of independent GAs, each maintaining separate populations, communicate with each other 
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via infrequent inter-population (as opposed to intra-population) matings. pGAs suffer less 
from premature convergence than single population GAs. Although the individual popula­
tions typically converge, different populations converge to different solutions, thus pre­
serving diversity across the populations. Inter-population mating permits crossover to 
combine solutions found in different regions of the search space. 

We would expect that employing mUltiple PBIL evolutions, parallel PBIL (pPBIL), has 
the potential to yield performance improvements similar to those achieved in pGAs. Mul­
tiple PBIL evolutions are simulated by using multiple probability vectors to generate solu­
tions. To keep the evolutions independent, each probability vector is only updated with 
solutions which are generated by sampling it. 

The benefit of parallel populations (beyond just multiple runs) is in using crossover to 
combine dissimilar solutions. There are many ways of introducing crossover into PBIL. 
The method which is used here is to sample two probability vectors for the creation of 
each solution vector, see Figure 3. The figure shows the algorithm with uniform cross­
over; nonetheless, many other crossover operators can be used. 

The randomized nature of crossover often yields unproductive results . If crossover is to be 
used, it is important to simulate the crossover operation many times. Therefore, crossover 
is used to create each member of the population (this is in contrast to crossing over the 
probability vectors once, and generating the entire population from the newly created 
probability vector). More details on integrating crossover and PBIL, and its use in combi­
natorial problems in robotic surgery can be found in [Baluja & Simon, 1996]. 

Results with using pPBIL in comparison to PBIL, GA, and pGA are shown in Table II. 
For many of the problems explored here, parallel versions of GAs and PBIL work better 
than the sequential versions, and the parallel PBIL models work better than the parallel 
GA models. In each of these experiments, the parameters were hand-tuned for each algo­
rithms. In every case, the GA was given at least twice as many function evaluations as 
PBIL. The crossover operator was chosen by trying several operators on the GA, and 
selecting the best one. The same crossover operator was then used for PBIL. For the pGA 
and pPBIL experiments, 10 subpopulations were always used . 

..... Generate Samples With Two Probability Vectors ..... 

for i :=1 to SAMPLES do 
vector I := generate_sample_vector_with_probabilities (PI); 
vector2 := generate_sample_vector_with_probabilities (P2); 
for j := I to LENGTH_do 

if (random (2) = 0) sample_ vector{i]lil := vector I [j] 
else sample_ vector{i][j] := vector2[j] 

evaluations[i] := Evaluate_Solution (sample[i]); 
besevector := best_evaluation (sample_vectors. evaluations) ; 

..... Update Both Probability Vectors Towards Best Solution ..... 

for i :=1 to LENGTH do 
PI[i] := Pl[i] • (1.0 - LR) + best_vector[i] • (LR); 
P2[i] := P2[i] * (1 .0 - LR) + besevector[i] • (LR); 

Figure 3: Generating samples based 
on two probability vectors. Shown 
with uniform crossover [Syswerda, 
1989] (50% chance of using 
probability vector 1 or vector 2 for 
each bit position). Every 100 
generations, each population makes 
a local copy of another population's 
probability vector (to replace 
vector2). In these experiments, there 
are a total of 10 subpopulations. 

Table IT: Sequential & Parallel, GA & PBIL, Avg. 25 runs 

- 200 city (minimize tour length) 

"'lIIont:lI' Optim. Highly Correlated Parameters - Base-2 Code (max) 

Optim. Highly Correlated Parameters - Gray Code (max) 

Optim. Independent Parameters - Base-2 Code (max) 

... lIlmo'",,,,,. Optim. Independent Parameters - Gray Code (max) 

(Problem with many maxima, see [Baluja, 1994]) (max) 
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4 SUMMARY & CONCLUSIONS 

PBIL was examined on a very large set of problems drawn from the GA literature. The 
effectiveness of PBIL for finding good solutions for static optimization functions was 
compared with a variety of GA and hillclimbing techniques. Second, Parallel-PBIL was 
introduced. pPBIL is designed to explicitly preserve diversity by using multiple parallel 
evolutions. Methods for reintroducing crossover into pPBIL were given. 

With regard to the empirical results, it should be noted that it is incorrect to say that one 
procedure will always perform better than another. The results do not indicate that PBIL 
will always outperform a GA. For example, we have presented problems on which GAs 
work better. Further, on problems such as binpacking, the relative results can change dras­
tically depending upon the number of bins and elements. The conclusion which should be 
reached from these results is that algorithms, like PBIL and MRSH, which are much sim­
pler than GAs, can outperform standard GAs on many problems of interest. 

The PBIL algorithm presented here is very simple and should serve as a prototype for 
future study. Three directions for future study are presented here. First, the most obvious 
extension to PBIL is to track more detailed statistics, such as pair-wise covariances of bit 
positions in high-evaluation vectors. ~eliminary work in this area has been conducted, 
and the results are very promising. Second, another extension is to quickly determine 
which probability vectors, in the pPBIL model, are unlikely to yield promising answers; 
methods such as Hoeffding Races may be adapted here [Maron & Moore, 1994]. Third, 
the manner in which the updates to the probability vector occur is similar to the weight 
update rules used in Learning Vector Quantization (LVQ). Many of the heuristics used in 
L VQ can be incorporated into the PBIL algorithm. 

Perhaps the most important contribution of the PBIL algorithm is a novel way of examin­
ing GAs. In many previous studies of the GA, the GA was examined at a micro-level, ana­
lyzing the preservation of building blocks and frequency of sampling hyperplanes. In this 
study, the statistics at the population level were examined. In the standard GA, the popula­
tion serves to implicitly maintain statistics about the search space. The selection and cross­
over mechanisms are ways of extracting these statistics from the population. PBIL's 
population does not maintain the information that is carried from one generation to the 
next. The statistics of the search are explicitly kept in the probability vector. 
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