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Abstract 

We present new results about the temporal-difference learning al­
gorithm, as applied to approximating the cost-to-go function of 
a Markov chain using linear function approximators. The algo­
rithm we analyze performs on-line updating of a parameter vector 
during a single endless trajectory of an aperiodic irreducible finite 
state Markov chain. Results include convergence (with probability 
1), a characterization of the limit of convergence, and a bound on 
the resulting approximation error. In addition to establishing new 
and stronger results than those previously available, our analysis 
is based on a new line of reasoning that provides new intuition 
about the dynamics of temporal-difference learning. Furthermore, 
we discuss the implications of two counter-examples with regards 
to the Significance of on-line updating and linearly parameterized 
function approximators. 

1 INTRODUCTION 

The problem of predicting the expected long-term future cost (or reward) of a 
stochastic dynamic system manifests itself in both time-series prediction and con­
trol. An example in time-series prediction is that of estimating the net present 
value of a corporation, as a discounted sum of its future cash flows, based on the 
current state of its operations. In control, the ability to predict long-term future 
cost as a function of state enables the ranking of alternative states in order to guide 
decision-making. Indeed, such predictions constitute the cost-to-go function that is 
central to dynamic programming and optimal control (Bertsekas, 1995). 

Temporal-difference learning, originally proposed by Sutton (1988), is a method for 
approximating long-term future cost as a function of current state. The algorithm 
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is recursive, efficient, and simple to implement. Linear combinations of fixed basis 
functions are used to approximate the mapping from state to future cost. The 
weights of the linear combination are updated upon each observation of a state 
transition and the associated cost. The objective is to improve approximations 
of long-term future cost as more and more state transitions are observed. The 
trajectory of states and costs can be generated either by a physical system or a 
simulated model. In either case, we view the system as a Markov chain. Adopting 
terminology from dynamic programming, we will refer to the function mapping 
states of the Markov chain to expected long-term cost as the cost-to-go function. 

In this paper, we introduce a new line of analysis for temporal-difference learning. 
In addition to providing new intuition about the dynamics of the algorithm, this 
approach leads to a stronger convergence result than previously available, as well 
as an interpretation of the limit of convergence and bounds on the resulting ap­
proximation error, neither of which have been available in the past. Aside from 
the statement of results, we maintain the discussion at an informal level, and make 
no attempt to present a complete or rigorous proof. The formal and more general 
analysis based on our line of reasoning can found in (Tsitsiklis and Van Roy, 1996), 
which also discusses the relationship between our results and other work involving 
tem poral-difference learning. 

The convergence results assume the use of both on-line updating and linearly pa­
rameterized function approximators. To clarify the relevance of these requirements, 
we discuss the implications of two counter-examples that are presented in (Tsitsiklis 
and Van Roy, 1996). These counter-examples demonstrate that temporal-difference 
learning can diverge in the presence of either nonlinearly parameterized function 
approximators or arbitrary (instead of on-line) sampling distributions. 

2 DEFINITION OF TD(A) 

In this section, we define precisely the nature of temporal-difference learning, as ap­
plied to approximation of the cost-to-go function for an infinite-horizon discounted 
Markov chain. While the method as well as our subsequent results are applicable to 
Markov chains with fairly general state spaces, including continuous and unbounded 
spaces, we restrict our attention in this paper to the case where the state space is 
finite. Discounted Markov chains with more general state spaces are addressed in 
(Tsitsiklis and Van Roy, 1996). Application of this line of analysis to the context of 
undiscounted absorbing Markov chains can be found in (Bertsekas and Tsitsiklis, 
1996) and has also been carried out by Gurvits (personal communication). 

We consider an aperiodic irreducible Markov chain with a state space S = 
{I, ... , n}, a transition probability matrix P whose (i, j)th entry is denoted by Pij, 

transition costs g(i,j) associated with each transition from a state i to a state j, 
and a discount factor Q E (0,1). The sequence of states visited by the Markov chain 
is denoted by {it I t = 0,1, ... }. The cost-to-go function J* : S t-+ ~ associated 
with this Markov chain is defined by 

J*(i) ~ E [f: olg(it, it+d I io = ij. 
t=o 

Since the number of dimensions is finite, it is convenient to view J* as a vector 
instead of a function. 

We consider approximations of J* using a function of the form 

J(i, r) = (<I>r)(i). 
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Here, r = (r(l), ... ,r(K)) is a parameter vector and cI> is a n x K. We denote the 
ith row of cI> as a (column) vector </J(i). 

Suppose that we observe a sequence of states it generated according to the transition 
probability matrix P and that at time t the parameter vector r has been set to some 
value rt. We define the temporal difference dt corresponding to the transition from 
it to it+l by 

dt = g(it, it+1) + aJ(it+1' rt) - J(it, rt). 
We define a sequence of eligibility vectors Zt (of dimension K) by 

t 

Zt = 2)aA)t-k</J(ik). 
k=O 

The TD(A) updates are then given by 

rt+l = rt + "Itdtzt, 
where ro is initialized to some arbitrary vector, "It is a sequence of scalar step 
sizes, and A is a parameter in [0,1]. Since temporal-difference learning is actually 
a continuum of algorithms, parameterized by A, it is often referred to as TD(A). 
Note that the eligibility vectors can be updated recursively according to Zt+1 
aAzt + </J(it+d, initialized with Z-l = O. 

3 ANALYSIS OF TD("\) 

Temporal-difference learning originated in the field of reinforcement learning. A 
view commonly adopted in the original setting is that the algorithm involves "look­
ing back in time and correcting previous predictions." In this context, the eligibility 
vector keeps track of how the parameter vector should be adjusted in order to ap­
propriately modify prior predictions when a temporal-difference is observed. Here, 
we take a different view which involves examining the "steady-state" behavior of 
the algorithm and arguing that this characterizes the long-term evolution of the 
parameter vector. In the remainder ofthis section, we introduce this view of TD(A) 
and provide an overview of the analysis that it leads to. Our goal in this section is to 
convey some intuition about how the algorithm works, and in this spirit, we main­
tain the discussion at an informal level, omitting technical assumptions and other 
details required to formally prove the statements we make. These technicalities are 
addressed in (Tsitsiklis and Van Roy, 1996), where formal proofs are presented. 

We begin by introducing some notation that will make our discussion here more 
concise. Let 71"(1), .. . , 7I"(n) denote the steady-state probabilities for the process it. 
We assume that 7I"(i) > 0 for all i E S. We define an n x n diagonal matrix D with 
diagonal entries 71"(1), ... , 7I"(n). We define a weighted norm II ·IID by 

IIJIID = L 7I"(i)J2(i). 
iES 

We define a "projection matrix" II by 

IIJ = arg !llin IIJ - JIID. 
J=tf>r 

It is easy to show that II = cI>(cI>' DcI»-lcI>' D. 

We define an operator T(>") : ~n I-t ~n, indexed by a parameter A E [0,1) by 

(T(» J)(i) = (1 - ~) %;. ~m E [t, o/g(i" it+1) + "m+l J(im+l) I io = i) . 
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For A = 1 we define (T(l)J)(i) = J*(i), so that lim>.tl(T(>')J)(i) = (T(l)J)(i). To 
interpret this operator in a meaningful manner, note that, for each m, the term 

E [f cig(it , it+d + am+! J(im+d I io = i] 
t=o 

is the expected cost to be incurred over m transitions plus an approximation to 
the remaining cost to be incurred, based on J. This sum is sometimes called the 
"m-stage truncated cost-to-go." Intuitively, if J is an approximation to the cost­
to-go function, the m-stage truncated cost-to-go can be viewed as an improved 
approximation. Since T(>') J is a weighted average over the m-stage truncated cost­
to-go values, T(>') J can also be viewed as an improved approximation to J*. A 
property of T(>') that is instrumental in our proof of convergence is that T(>') is a 
contraction of the norm II·IID. It follows from this fact that the composition IIT(>') 
is also a contraction with respect to the same norm, and has a fixed point of the 
form cf>r* for some parameter vector r* . 

To clarify the fundamental structure of TD(A), we construct a process X t = 
(it, it+!, Zt)· It is easy to see that Xt is a Markov process. In particular, Zt+l 
and it+! are deterministic functions of X t and the distribution of it+2 only depends 
on it+l. Note that at each time t, the random vector X t , together with the cur­
rent parameter vector rt, provides all necessary information for computing rt+l. By 
defining a function s with s(r, X) = (g(i,j)+aJ(j, r) -J(i, r))z, where X = (i,j, z), 
we can rewrite the TD(A) algorithm as 

rt+1 = rt + Its(rt, Xd· 

For any r, s(r,Xt ) has a "steady-state" expectation, which we denote by 
Eo[s(r, X t )]. Intuitively, once X t reaches steady-state, the TD(A) algorithm, in 
an "average" sense, behaves like the following deterministic algorithm: 

TT+l = TT + ITEO[S(TT' X t )]. 

Under some technical assumptions, a theorem from (Benveniste, et al., 1990) can 
be used to deduce convergence TD(A) from that of the deterministic counterpart. 
Our study centers on an analysis of this deterministic algorithm. A theorem from 
(Benveniste, et aI, 1990) is used to formally deduce convergence of the stochastic 
algorithm. 

It turns out that 
Eo[s(r,Xt )] = cf>'D(T(>')(cf>r) - cf>r). 

Using the contraction property of T(>'), 

(r - r*)'Eo[s(r,Xt )] = (cf>r - cf>r*)'D(IIT(>')(cf>r) - cf>r* + (cf>r* - cf>r)) 

< lIcf>r - cf>r*IID . IlIIT(>') (cf>r) - cf>r*IID -11cf>r* - cf>r1l1 

< (0: -1)IIcf>r - cf>r*1I1. 

Since a < 1, this inequality shows that the steady state expectation Eo[s(r, Xd] 
generally moves the parameter vector towards r*, the fixed point of IIT(>'), where 
"closeness" is measured in terms of the norm II . liD. This provides the main line 
of reasoning behind the proof of convergence provided in (Tsitsiklis and Van Roy, 
1996). Some illuminating interpretations of this deterministic algorithm, which are 
useful in developing an intuitive understanding of temporal difference learning, are 
also discussed in (Tsitsiklis and Van Roy, 1996). 
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4 CONVERGENCE RESULT 

We now present our main result concerning temporal-difference learning. A formal 
proof is provided in (Tsitsiklis and Van Roy, 1996). 

Theorem 1 Let the following conditions hold: 
(a) The Markov chain it has a unique invariant distribution 71" that satisfies 71"' P = 
71"', with 71"( i) > 0 for all i. 
(b) The matrix 4> has full column rank; that is, the "basis functions" {¢k I k = 
1, ... ,K} are linearly independent. 
(c) The step sizes 'Yt are positive, nonincreasing, and predetermined. Furthermore, 
they satisfy 2::0 'Yt = 00, and 2::0 'Yt < 00. 
We then have: 
(a) For any A E [0,1]' the TD(A) algorithm, as defined in Section 2, converges with 
probability 1. 
(b) The limit of convergence r* is the unique solution of the equation 

IIT(>') (4)r*) = 4>r*. 

(c) Furthermore, r* satisfies 

l14>r* - J* liD :S 1 - Aa IlIIJ* - J* liD. 
I-a 

Part (b) of the theorem leads to an interesting interpretation of the limit of con­
vergence. In particular, if we apply the TD (A) operator to the final approximation 
4>r*, and then project the resulting function back into the span of the basis func­
tions, we get the same function 4>r*. Furthermore, since the composition IIT(>') 
is a contraction, repeated application of this composition to any function would 
generate a sequence of functions converging to 4>r*. 

Part (c) of the theorem establishes that a certain desirable property is satisfied 
by the limit of convergence. In particular, if there exists a vector r such that 
4>r = J*, then this vector will be the limit of convergence of TD(A), for any A E 
[0, 1]. On the other hand, if no such parameter vector exists, the distance between 
the limit of convergence 4>r* and J* is bounded by a multiple of the distance 
between the projection IIJ* and J*. This latter distance is amplified by a factor of 
(1 - Aa)/(1 - a), which becomes larger as A becomes smaller. 

5 COUNTER-EXAMPLES 

Sutton (1995) has suggested that on-line updating and the use of linear function 
approximators are both important factors that make temporal-difference learning 
converge properly. These requirements also appear as assumptions in the conver­
gence result of the previous section. To formalize the fact that these assumptions 
are relevant, two counter-examples were presented in (Tsitsiklis and Van Roy, 1996). 

The first counter-example involves the use of a variant of TD(O) that does not sample 
states based on trajectories. Instead, the states it are sampled independently from a 
distribution q(.) over S, and successor states jt are generated by sampling according 
to Pr[jt = jlit] = Pid. Each iteration of the algorithm takes on the form 

rt+I = rt + 'Yt¢(i t ) (g(it,jt) + a¢'(jt)rt - ¢'(it)rt). 

We refer to this algorithm as q-sampled TD(O). Note that this algorithm is closely 
related to the original TD(A) algorithm as defined in Section 2. In particular, if it is 
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generated by the Markov chain and jt = it+! , we are back to the original algorithm. 
It is easy to show, using a subset of the arguments required to prove Theorem 1, 
that this algorithm converges when q(i) = 7r(i) for all i, and the Assumptions of 
Theorem 1 are satisfied. However, results can be very different when q( .) is arbi­
trary. In particular, the counter-example presented in (Tsitsiklis an Van Roy, 1996) 
shows that for any sampling distribution q( .) that is different from 7r(-) there exists 
a Markov chain with steady-state probabilities 7r(-) and a linearly parameterized 
function approximator for which q-sampled TD(O) diverges. A counter-example 
with similar implications has also been presented by Baird (1995). 

A generalization of temporal difference learning is commonly used in conjunction 
with nonlinear function approximators. This generalization involves replacing each 
vector </J( it) that is used to construct the eligibility vector with the vector of deriva­
tives of J(it, .), evaluated at the current parameter vector rt. A second counter­
example in (Tsitsiklis and Van Roy, 1996), shows that there exists a Markov chain 
and a nonlinearly parameterized function approximator such that both the param­
eter vector and the approximated cost-to-go function diverge when such a variant 
of TD(O) is applied. This nonlinear function approximator is "regular" in the sense 
that it is infinitely differentiable with respect to the parameter vector. However, it 
is still somewhat contrived, and the question of whether such a counter-example ex­
ists in the context of more standard function approximators such as neural networks 
remains open. 

6 CONCLUSION 

Theorem 1 establishes convergence with probability 1, characterizes the limit of 
convergence, and provides error bounds, for temporal-difference learning. It is in­
teresting to note that the margins allowed by the error bounds are inversely propor­
tional to >.. Although this is only a bound, it strongly suggests that higher values 
of >. are likely to produce more accurate approximations. This is consistent with 
the examples that have been constructed by Bertsekas (1994). 

The sensitivity of the error bound to >. raises the question of whether or not it ever 
makes sense to set >. to values less than 1. Many reports of experimental results, 
dating back to Sutton (1988), suggest that setting>. to values less than one can 
often lead to significant gains in the rate of convergence. A full understanding of 
how>. influences the rate of convergence is yet to be found, though some insight in 
the case of look-up table representations is provided by Dayan and Singh (1996). 
This is an interesting direction for future research. 
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