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Abstract 

Many popular learning rules are formulated in terms of continu­
ous, analog inputs and outputs. Biological systems, however, use 
action potentials, which are digital-amplitude events that encode 
analog information in the inter-event interval. Action-potential 
representations are now being used to advantage in neuromorphic 
VLSI systems as well. We report on a simple learning rule, based 
on the Riccati equation described by Kohonen [1], modified for 
action-potential neuronal outputs. We demonstrate this learning 
rule in an analog VLSI chip that uses volatile capacitive storage for 
synaptic weights. We show that our time-dependent learning rule 
is sufficient to achieve approximate weight normalization and can 
detect temporal correlations in spike trains. 
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1 INTRODUCTION 

It is an ongoing debate how information in the nervous system is encoded and carried 
between neurons. In many subsystems of the brain it is now believed that it is done 
by the exact timing of spikes. Furthermore spike signals on VLSI chips allow the 
use of address-event busses to solve the problem of the large connectivity in neural 
networks [3, 4]. For these reasons our artificial neuron and others [2] use spike signals 
to communicate. Additionally the weight updates at the synapses are determined 
by the relative timing of presynaptic and postsynaptic spikes, a mechanism that 
has recently been discovered to operate in cortical synapses [5, 7, 6]. 

Weight normalization is a useful property of learning rules. In order to perform the 
normalization, some information about the whole weight vector must be available 
at every synapse. We use the neuron's output spikes (The neuron's output is the 
product of the weight and the input vector), which retrogradely propagate through 
the dendrites to the synapses (as has been observed in biological neurons [5]). In 
our model approximate normalization is an implicit property of the learning rule. 

2 THE LEARNING RULE 

presynaptic spikes 
7 

.~ ____ L-~ ____ ~ ______ ~_ 

correlation signat 

3 ynaptic weight 

postsynaptic spikes 

Figure 1: A snapshot of the simulation variables involved at one synapse. With 
r = 0.838 

The core of the learning rule is a local 'correlation signal' c at every synapse. It 
records the 'history' of presynaptic spikes. It is incremented by 1 with every presy­
naptic spike and decays in time with time constant r: 

c(tm,O) = 0 
ttn,n- t 171.,n-l 

c(tm,n) = e- T c(tm,n-d + 1 n>O 
(1) 

tm,o is the time of the m'th postsynaptic spike and tm,n (n > 0) is the time of the 
n'th presynaptic spike after the m'th postsynaptic spike. The weight changes when 
the cell fires an action potential: 
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tTn o-tTTl-l • 

w(tm,o) = W(tm-l,O) + ae- . T • c(tm-1,s) - ,8w(tm- 1,o) 

s = max{v : tm-l ,v :s; tm,o} 
(2) 

where w is the weight at this synapse. tm-l,s means the last event (presynaptic 
or postsynaptic spike) before the m'th postsynaptic spike. a and ,8 are parameters 
influencing learning speed and weight vector normalization (see (5)). 

Our learning rule is designed to react to temporal correlations between spikes in 
the input signals. However, to show the normalizing of the weights we analyze its 
behavior by making some simplifying assumptions on the input and output signals; 
e.g. the intervals of the presynaptic and the postsynaptic spike train are Poisson 
distributed and there is no correlation between single spikes. Therefore we can 
represent the signals by their instantaneous average frequencies 0 and i. Now the 
simplified learning rule can be written as: 

:t w = al(O)f - ,8wO (3) 

(4) 

l(O) represents the average percentage to which the correlation signal is reduced 
between weight updates (output spikes). So when the neuron's average firing rate 
fulfills 0 » ~, one can approximate l(O) ~ 1. (3) is thus reduced to the Riccati 
equation described by Kohonen [1]. This rule would not be Hebbian, but normalizes 
the weight vector (see (5)). Note that if the correlation signal does not decay, then 
our rule matches exactly the Riccati equation. We will further refer to it as the 
Modified Riccati Rule (MRR). Whereas if 0 « ~ then l(O) ~ Or, which is a 
Hebbian learning rule also described in [1]. 

If we assume that the spiking mechanism preserves 0 = wT f and insert it in (3), it 
follows for the equilibrium state: 

IIwll = Jl(O)~ (5) 

Since l(O) < 1 the weight vector will never be longer than Ii' This property also 

holds when the simplifying assumptions are removed. The vector will always be 
smaller, as it is with no decay of the correlation signals, since the decay only affects 
the incrementing part of the rule. 

Matters get much more complicated with the removal of the assumption of the 
pre- and postsynaptic trains being independently Poisson distributed. With an 
integrate-and-fire neuron for instance, or if there exist correlations between spikes 
of the input trains, it is no longer possible to express what happens in terms of rate 
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coding only (with f and 0). (3) is still valid as an approximation but temporal 
relationships between pre- and postsynaptic spikes become important. Presynaptic 
spikes immediately followed by an action potential will have the strongest increasing 
effect on the synapse's weight. 

3 IMPLEMENTATION IN ANALOG VLSI 

We have implemented a learning rule in a neuron circuit fabricated in a 2.0f..Lm 
CMOS process. This neuron is a preliminary design that conforms only approxi­
mately to the MRR. The neuron uses an integrate-and-fire mechanism to generate 
action potentials (Figure 2). 

Figure 2: Integrate-and-fire neuron. The sarna capacitor holds the somatic mem­
brane voltage. This voltage is compared to a threshold thresh with a differential 
pair. When it crosses this threshold it gets pulled up through the mirrored current 
from the differential pair. This same current gets also mirrored to the right and 
starts to pull up a second leaky capacitor (setback) through a small W / L transistor, 
so this voltage rises slowly. This capacitor voltage finally opens a transistor that 
pulls sarna back to ground where it restarts integrating the incoming current. The 
parameters tonic+ and tonic- are used to add or subtract a constant current to 
the soma capacitor. tre! allows the spike-width to be changed. 

Not shown, but also part of the neuron, are two non-learning synapses: one ex­
citatory and one inhibitory. Each of three learning synapses contains a storage 
capacitor for the synaptic weight and for the correlation signal (Figure 3). 

The correlation signal c is simplified to a binary variable in this implementation. 
When an input spike occurs, the correlation signal is set to 1. It is set to 0 whenever 
the neuron produces an output-spike or after a fixed time-period (T in (7)) if there 
is no other input spike: 

c(tm,o) = 0 

c(tm,n) = 1 n > 0 , tm,n::; tm+1,O 
(6) 

This approximation unfortunately tends to eliminate differences between highly 
active inputs and weaker inputs. Nevertheless the weight changes with every output 
spike: 
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Figure 3: The CMOS learning-synapse incorporates the learning mechanism. The 
weight capacitor holds the weight, the carr capacitor stores the correlation signal 
representation. The magnitude of the weight increment and decrement are com­
puted by a differential pair (upper left w50). These currents are mirrored to the 
synaptic weight and gated by digital switches encoding the state of the correlation 
signal and of the somatic action potential. The correlation signal reset is medi­
ated by a leakage transistor, decayin, which has a tonic value, but is increased 
dramatically when the output neuron fires. 

if C{tm-l s) = 1 and tm 0 - tm-l s < T , " 

otherwise 
(7) 

w is the weight on one synapse, c is the correlation signal of that synapse, and a is 
a parameter that controls how fast the weight changes. (See in the previous section 
for a description of tm,n.) The weight, W50, is the equilibrium value of the synaptic 
weight when the occurrence of an input spike is fifty percent correlated with the 
occurrence of an output spike. This implementation differs from the Riccati rule in 
that either the weight increment or the weight decrement, but not both, are executed 
upon each output spike. Also, the weight increment is a function of the synaptic 
weight. The circuit was implemented this way to try and achieve an equilibrium 
value for the synaptic weight equal to the fraction of the time that the input neuron 
fired relative to the times the output neuron fired. This is the correct equilibrium 
value for the synaptic weight in the Riccati rule. The evolution of a synaptic weight 
is depicted in Figure 4. 

The synaptic weight vector normalization in this implementation is accurate only 
when the assumptions of the design are met. These assumptions are that there is 
one or fewer input spikes per synapse for every output spike. This assumption is 
easier to meet when there are many synapses formed with the neuron, so that spikes 
from multiple inputs combine to drive the cell to threshold. Since we have only 
three synapses, this approximation is usually violated. Nevertheless, the weights 
compete with one another and therefore the length of the weight vector is limited. 
Competition between synaptic weights occurs because if one weight is stronger, it 
causes the output neuron to spike and this suppresses the other input that has not 
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fired. Future revision of the chip will conform more closely to the MRR. 
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Figure 4: A snapshot of the learning behavior of a single VLSI synapse: The top 
trace is the neuron output (IV/division), the upper middle trace is the synap­
tic weight (lower voltage means a stronger synaptic weight) (25mV /division), the 
lower middle trace is a representation of the correlation signal (1 V /division)(it has 
inverted sense too) and the bottom trace is the presynaptic activity (1 V / division) . 
The weight changes only when an output spike occurs. The timeout of the correla­
tion signal is realized with a decay and a threshold. If the correlation signal is above 
threshold, the weight is strengthened. If the signal has decayed below threshold at 
the time of an output spike, the weight is weakened. The magnitude of the change 
of the weight is a function of the absolute magnitude of the weight. This weight 
was weaker than W50, so the increments are bigger than the decrements. 

4 TEMPORAL CORRELATION IN INPUT SPIKE 
TRAINS 

Figure 5 illustrates the ability of our learning rule to detect temporal correlations in 
spike trains. A simulated neuron strengthens those two synapses that receive 40% 
coincident spikes, although all four synapses get the same average spike frequencies. 

5 DISCUSSION 

Learning rules that make use of temporal correlations in their spike inputs/outputs 
provide biologically relevant mechanisms of synapse modification [5, 7, 6]. Analog 
VLSI implementations allow such models to operate in real time. We plan to develop 
such analog VLSI neurons using floating gates for weight storage and an address­
event bus for interneuronal connections. These could then be used in realtime 
applications in adaptive 'neuromorphic' systems. 
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Figure 5: In this simulation we use a neuron with four synapses. All of them get 
input trains of the same average frequency (20Hz). Two of those input trains are 
the result of independent Poisson processes (synapses 3 and 4), the other two are the 
combination oftwo Poisson processes (synapses 1 and 2): One that is independent of 
any other (12Hz) and one that is shared by the two with slightly different time delays 
(8Hz): Synapse 1 gets those coincident spikes 0.01 seconds earlier than synapse 2. 
Synapse 2 gets stronger because when it together with synapse 1 triggered an action 
potential, it was the last synapse being active before the postsynaptic spike. The 
parameters were: Q = 0.004, {3 = 0.02, T = 11ms 
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