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Abstract 

The limitations of using self-organizing maps (SaM) for either 
clustering/vector quantization (VQ) or multidimensional scaling 
(MDS) are being discussed by reviewing recent empirical findings 
and the relevant theory. SaM 's remaining ability of doing both VQ 
and MDS at the same time is challenged by a new combined tech­
nique of online K-means clustering plus Sammon mapping of the 
cluster centroids. SaM are shown to perform significantly worse in 
terms of quantization error , in recovering the structure of the clus­
ters and in preserving the topology in a comprehensive empirical 
study using a series of multivariate normal clustering problems. 

1 Introduction 

Self-organizing maps (SaM) introduced by [Kohonen 84] are a very popular tool 
used for visualization of high dimensional data spaces. SaM can be said to do 
clustering/vector quantization (VQ) and at the same time to preserve the spatial 
ordering of the input data reflected by an ordering of the code book vectors (cluster 
centroids) in a one or two dimensional output space, where the latter property is 
closely related to multidimensional scaling (MDS) in statistics. Although the level 
of activity and research around the SaM algorithm is quite large (a recent overview 
by [Kohonen 95] contains more than 1000 citations) , only little comparison among 
the numerous existing variants of the basic approach and also to more traditional 
statistical techniques of the larger frameworks of VQ and MDS is available. Ad­
ditionally, there is only little advice in the literature about how to properly use 
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SOM in order to get optimal results in terms of either vector quantization (VQ) or 
multidimensional scaling or maybe even both of them. To make the notion of SOM 
being a tool for "data visualization" more precise, the following question has to be 
answered: Should SOM be used for doing VQ, MDS, both at the same time or none 
of them? 

Two recent comprehensive studies comparing SOM either to traditional VQ or MDS 
techniques separately seem to indicate that SOM is not competitive when used for 
either VQ or MDS: [Balakrishnan et al. 94J compare SOM to K-means clustering 
on 108 multivariate normal clustering problems with known clustering solutions and 
show that SOM performs significantly worse in terms of data points misclassified1 , 

especially with higher numbers of clusters in the data sets. [Bezdek & Nikhil 95J 
compare SOM to principal component analysis and the MDS-technique Sammon 
mapping on seven artificial data sets with different numbers of points and dimen­
sionality and different shapes of input distributions. The degree of preservation of 
the spatial ordering of the input data is measured via a Spearman rank correla­
tion between the distances of points in the input space and the distances of their 
projections in the two dimensional output space. The traditional MDS-techniques 
preserve the distances much more effectively than SOM, the performance of which 
decreases rapidly with increasing dimensionality of the input data. 

Despite these strong empirical findings that speak against the use of SOM for either 
VQ or MDS there remains the appealing ability ofSOM to do both VQ and MDS at 
the same time. It is the aim of this work to find out, whether a combined technique 
of traditional vector quantization (clustering) plus MDS on the code book vectors 
(cluster centroids) can perform better than Kohonen's SOM on a series of multi­
variate normal clustering problems in terms of quantization error (mean squared 
error) , recovering the cluster structure (Rand index) and preserving the topology 
(Pearson correlation). All the experiments were done in a rigoruos statistical design 
using multiple analysis of variance for evaluation of the results. 

2 SOM and vector quantization/clustering 

A vector quantizer (VQ) is a mapping, q, that assigns to each input vector x a 
reproduction (code book) vector x = q( x) drawn from a finite reproduction alphabet 
A = {Xi, i = 1, ... , N}. The quantizer q is completely described by the reproduction 
alphabet (or codebook) A together with the partition S = {Si , i = 1, .. . , N}, of the 
input vector space into the sets Si = {x : q(x) = xd of input vectors mapping into 
the ith reproduction vector (or code word) [Linde et al. 80J. To be compareable to 
SO M, our VQ assigns to each of the input vectors x = (xO, xl, . .. , x k- l ) a socalled 
code book vector x = (xO, xl, . .. , xk -1) of the same dimensionality k. For reasons of 
data compression, the number of code book vectors N ~ n, where n is the number 
of input vectors. 

Demanded is a VQ that produces a mapping q for which the expected distortion 
caused by reproducing the input vectors x by code book vectors q( x) is at least 
locally minimal. The expected distortion is usually esimated by using the aver­
age distortion D, where the most common distortion measure is the squared-error 

1 Although SOM is an unsupervised technique not built for classification, the number 
of points missclassified to a wrong cluster center is an appropriate and commonly used 
performance measure for cluster procedures if the true cluster structure is known. 
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distortion d: 
k-l 

d(x, x) = L 1 Xi - Xi 12 (2) 
i=O 

The classical vector quantization technique to achieve such a mapping is the LBG­
algorithm [Linde et al. 80], where a given quantizer is iteratively improved. Al­
ready [Linde et al. 80] noted that their proposed algorithm is almost similar to 
the k-means approach developed in the cluster analysis literature starting from 
[MacQueen 67]. Closely related to SOM is online K-means clustering (oKMC) con­
sisting of the following steps: 

1. Initialization: Given N = number of code book vectors, k = dimensionality 
of the vectors, n = number of input vectors, a training sequence {Xj; j = 
0, ... , n -I}, an initial set Ao of N code book vectors x and a discrete-time 
coordinate t = 0 ... , n - 1. 

2. Given At = {Xi ; i = 1, .. . , N}, find the minimum distortion partition 
peAt) = {Si; i = 1, ... , N}. Compute d(Xt, Xi) for i = 1, .. . , N. If 
d(Xt, Xi) ~ (Xt, XI) for alII, then Xt E Si. 

3. Update the code book vector with the minimum distortion 

X(t)(Si) = x(t-1)(S;) + O'[X(t) - X(t-l)(Si)] (3) 

where 0' is a learning parameter to be defined by the user. Define At+1 = 
x(P(A t », replace t by t + 1, ift = n -1, halt. Else go to step 2. 

The main difference between the SOM-algorithm and oKMC is the fact that the 
code book vectors are ordered either on a line or on a planar grid (i.e. in a one or 
two dimensional output space). The iterative procedure is the same as with oKMC 
where formula (3) is replaced by 

X(t)(S;) = X(t-1)(Si) + h[x(t) - X(t-l)(Si)] (4) 

and this update is not only computed for the Xi that gives minimum distortion, but 
also for all the code book vectors which are in the neighbourhood of this Xi on the 
line or planar grid. The degree of neighbourhood and amount of code book vectors 
which are updated together with the Xi that gives minimum distortion is expressed 
by h, a function that decreases both with distance on the line or planar grid and 
with time and that also includes an additional learning parameter 0' . If the degree 
of neighbourhood is decreased to zero, the SOM-algorithm becomes equal to the 
oKMC-algorithm. 

Whereas local convergence is guaranteed for oKMC (at least for decreasing 0', 

[Bot.t.ou & Bengio 95]), no general proof for the convergence of SOM with nonzero 
neighbourhood is known. [Kohonen 95, p.128] notes that the last. steps of the SOM 
algorithm should be computed with zero neighbourhood in order to guarantee "the 
most. accurate density approximation of the input samples" . 

3 SOM and multidimensional scaling 

Formally, a topology preserving algorithm is a t.ransformation <1l : Rk ....... RP, that 
either preserves similarities or just. similarity orderings of the points in the input 
space Rk when they are mapped into the outputspace R? For most algorithms it is 
the case t.hat both the number of input vectors 1 x E Rk 1 and the number of output 
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vectors I x E RP I are equal to n. A transformation !l> : x = !l>( x), that preserves 
similarities poses the strongest possible constraint since d( Xi, Xj) = cf( Xi, X j) for all 
Xi, X JERk, all Xi, X j E RP, i, j = 1, .. . , n - 1 and d (cf) being a measure of distance 
in Rk (RP). Such a transformation is said to produce an isometric image. 

Techniques for finding such transformations !l> are, among others, various forms of 
multidimensional scalinl (MDS) like metric MDS [Torgerson 52], nonmetric MDS 
[Shepard 62] or Sammon mapping [Sammon 69], but also principal component anal­
ysis (PCA) (see e.g. [Jolliffe 86]) or SOM. Sammon mapping is doing MDS by 
minimizing the following via steepest descent: 

Since the SOM has been designed heuristically and not to find an extremum for a 
certain cost or energy function3 and the theoretical connection to the other MDS 
algorithms remains unclear. It should be noted that for SOM the number of output 
vectors I x E RP I is limited to N, the number of cluster centroids x and that the x 
are further restricted to lie on a planar grid . This restriction entails a discretization 
of the outputspace RP . 

4 Online [(-means clustering plus Sammon mapping of the 
cl uster centroids 

Our new combined approach consists of simply finding the set of A = {Xi, i = 
1, ... , N} code book vectors that give the minimum distortion partition P(A) = 
{8i ; i = 1, . .. , N} via the oKMC algorithm and then using the Xi as input vectors 
to Sammon mapping and thereby obtaining a two dimensional representation of the 
Xi via minimizing formula (5). Contrary to SOM, this two dimensional representa­
tion is not restricted to any fixed form and the distances between the N mapped 
Xi directly correspond to those in the original higher dimension. This combined 
algorithm is abbreviated oKMC+. 

5 Empirical comparison 

The empirical comparison was done using a 3 factorial experimental design with 
3 dependent variables. The multivariate normal distributions were generated us­
ing the procedure by [Milligan & Cooper 85], which since has been used for several 
comparisons of cluster algorithms (see e.g. [Balakrishnan et al. 94]). The marginal 
normal distributions gave internal cohesion of the clusters by warranting that more 
than 99% of the data lie within 3 standard deviations (IT). External isolation was 
defined as having the first dimension nonoverlapping by truncating the normal dis­
tributions in the first dimension to ±2IT and defining the cluster centroids to be 
4.5IT apart. In all other dimensions the clusters were allowed to overlap by setting 
the distance per dimension between two centroids randomly to lie between ±6IT. 
The data was normalized to zero mean and unit variance in all dimensions. 

2Note that for MDS not the actual coordinates of the points in the input space but 
only their distances or the ordering of the latter are needed. 

3[Erwin et al . 92] even showed that such an objective function cannot exist for SOM. 
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algorithm no. clusters dimension msqe Rand corr. 
SOM 4 4 0.53 1.00 0.64 

6 1.53 0.91 0.72 
8 1.15 O.YY 0.74 

9 4 0.33 0.97 0.48 
6 0.54 0.97 0.66 
8 0.81 0.96 0.74 

mean SOM 0 .81 0.97 0.67 
oKMC+ 4 4 0.53 0.99 0.87 

6 1.06 0.99 0.87 
8 1.17 1.00 O.Yl 

9 4 0.29 0.98 0.89 
6 0.47 0.99 0.87 
8 0.56 0.98 0.86 

mean oKMC+ 0 .68 0.99 0.88 

Factor 1, Type of algorithm: The number of code book vectors of both the SOM 
and the oKMC+ were set equal to the number of clusters known to be in the data. 
The SOMs were planar grids consisting of 2 x 2 (3 x 3) code book vectors. During 
the first phase (1000 code book updates) a was set to 0.05 and the radius of the 
neighbourhood to 2 (5). During the second phase (10000 code book updates) a was 
set to 0.02 and the radius ofthe neighbourhood to 0 to guarantee the most accurate 
vector quantization [Kohonen 95, p.128]. The oKMC+ algorithm had the parameter 
a fixed to 0.02 and was trained using each data set 20 times, the minimization of 
formula (5) was stopped after 100 iterations. Both SOM and oKMC+ were run 10 
times on each data set and only the best solutions, in terms of mean squared error, 
were used for further analysis. 

Factor 2, Number of clusters was set to 4 and 9. 

Factor 3, Number of dimensions was set to 4,6, or8. 

Dependent variable 1: mean squared error was computed using formula (1). 

Dependent variable 2, Rand index (see [Hubert & Arabie 85]) is a measure of agree­
ment between the true, known partition structure and the obtained clusters. Both 
the numerator and the denominator of the index reflect frequency counts. The 
numerator is the number of times a pair of data is either in the same or in differ­
ent clusters in both known and obtained clusterings for all possible comparisons 
of data points. Since the denominator is the total number of all possible pairwise 
comparisons, an index value of 1.0 indicates an exact match of the clusterings. 

Dependent variable 3, correlation is a measure of the topology preserving abilities of 
the algorithms. The Pearson correlation of the distances d( Xl, X2) in the input space 
and the distances d( Xi, X j) in the output space for all possible pairwise comparisons 
of data points is computed. Note that for SOM the coordinates of the code book 
vectors on the planar grid were used to compute the d. An algorithm that preserves 
all dist.ances in every neighbourhood would produce an isometric image and yield 
a value of 1.0 (see [Bezdek & Nikhil 95] for a discussion of measures of topolgy 
preservation) . 

For each cell in the full-factorial 2 x 2 x 3 design 3 data sets with 25 points for each 
cluster were generated resulting in a total of 36 data sets. A multiple analysis of 
variance (MANOVA) yielded the following significant effects at the .05 error level: 

The mean squared error is lower for oKMC+ than for SOM, it is lower for the 9-
cluster problem than for the 4-cluster problem and is higher for higher dimensional 
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data. There is also a combined effect of the number of clusters and dimensions on 
the mean squared error. The Rand index is higher for oKMC+ than for SOM, there 
is also a combined effect of the number of clusters and dimensions. The correlation 
index is higher for oKMC+ than for SOM. Since the main interest of this study is the 
effect of the type of algorithm on the dependent variables, the mean performances 
for SOM and oKMC+ are printed in bold letters in the table. Note that the overall 
differences in the performances of the two algorithms are blurred by the significant 
effects of the other factors and that therefore the differences of the grand means 
across the type of algorithms appear rather small. Only by applying a MANOVA, 
effects of the factor 'type of algorithms' that are masked by additional effects of 
the other two factors 'number of clusters' and 'number of dimensions' could still be 
detected. 

6 Discussion and Conclusion 

From the theoretical comparison of SOM to oKMC it should be clear that in terms 
of quantization error, SOM should only be possible to perform as good as oKMC 
if SOM's neighbourhood is set to zero. Additional experiments, not reported here 
in detail for brevity, with nonzero neighbourhood till the end of SOM training 
gave even worse results since the neighbourhood tends to pull the obtained clus­
ter centroids away from the true ones. The Rand index is only slightly better for 
oKMC+. The high values indicate that both algorithms were able to recover the 
known cluster structure. Topology preserving is where SOM performs worst com­
pared to oKMC+. This is a direct implication of the restriction to planar grids 
which allows only 2::=2 i,(&~2) different distances in an s x s planar grid instead 
of N(~ -1) different distances for N = s x s cluster centroids mapped via Sammon 
mapping in the case of oKMC+. Using a nonzero neighbourhood at the end of SOM 
training did not warrant any significant improvements. 

An argument that could be brought forward against our approach towards compar­
ing SOM and oKMC+ is that it would be unfair or not correct to set the number 
of SOM's code book vectors equal to the number of clusters known to be in the 
data. In fact it seems to be common practice to apply SOM with numbers of code 
book vectors that are a multiple of the input vectors available for training (see e.g. 
[Kohonen 95, pp.113]). Two things have to be said against such an argumentation: 
First if one uses more or even only the same amount of code book vectors than input 
vectors during vector quantization, each code book vector will become identical to 
one of the input vectors in the limit of learning. So every Xi is replaced with an 
identical Xi, which does not make any sense and runs counter to every notion of vec­
tor quantization. This means that SOMs employing numbers of code book vectors 
t.hat are a multiple of the input vectors available can be used for MDS only. But 
even such big SOMs do MDS in a very crude way: We computed SOMs consisting 
of either 20 x 20 (for data sets consisting of 4 clusters and 100 points) or 30 x 30 
(for data sets consisting of 9 clusters and 225 points) code book vectors for all 36 
data sets which gave an average correlation of 0.77 between the distances di and di . 

This is significantly worse at the .05 error level compared to the average correlation 
of 0.95 achieved by Sammon mapping applied to the input data directly. 

Our data sets consisted of iid multivariate normal distributions which therefore have 
spherical shape. All VQ algorithms using squared distances as a distortion measure, 
including our versions of oKMC as well as SOM, are inherently designed for such 
distributions. Therefore, the clustering problems in this study, being also perfectly 
seperable in one dimension, were very simple and should be solveable with little or 
no error by any clustering or MDS algorithm. 
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In this work we examined the vague concept of using SOM as a "data visualization 
tool" both from a theoretical and empirical point of view. SOM cannot outperform 
traditional VQ techniques in terms of quantization error and should therefore not 
be used for doing VQ. From [Bezdek & Nikhil 95] as well as from our discussion of 
SOM's restriction to planar grids in the output space which allows only a restricted 
number of different distances to be represented, it should be evident that SOM 
is also a rather crude way of doing MDS. Our own empirical results show that if 
one wants to have an algorithm that does both VQ and MDS at the same time, 
there exists a very simple combination oftraditional techniques (our oKMC+) with 
wellknown and established properties that clearly outperforms SOM. 

Whether it is a good idea to combine clustering or vector quantization and mul­
tidimensional scaling at all and whether more principled approaches (see e.g. 
[Bishop et al. this volume], also for pointers to further related work) can yield even 
better results than our oKMC+ and last but not least what self-organizing maps 
shmtld be used for under this new light remain questions to be answered by future 
investigations. 
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