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Abstract 

In order to process incoming sounds efficiently, it is advantageous 
for the auditory system to be adapted to the statistical structure of 
natural auditory scenes. As a first step in investigating the relation 
between the system and its inputs, we study low-order statistical 
properties in several sound ensembles using a filter bank analysis. 
Focusing on the amplitude and phase in different frequency bands, 
we find simple parametric descriptions for their distribution and 
power spectrum that are valid for very different types of sounds. 
In particular, the amplitude distribution has an exponential tail 
and its power spectrum exhibits a modified power-law behavior, 
which is manifested by self-similarity and long-range temporal cor­
relations. Furthermore, the statistics for different bands within a 
given ensemble are virtually identical, suggesting translation in­
variance along the cochlear axis. These results show that natural 
sounds are highly redundant, and have possible implications to the 
neural code used by the auditory system. 

1 Introduction 

The capacity of the auditory system to represent the auditory scene is restricted by 
the finite number of cells and by intrinsic noise. This fact limits the ability of the 
organism to discriminate between different sounds with similar spectro-temporal 
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characteristics. However, it is possible to enhance the discrimination ability by 
a suitable choice of the encoding procedure used by the system, namely of the 
transformation of sounds reaching the cochlea to neural spike trains generated in 
successive processing stages in response to these sounds. In general, the choice of 
a good encoding procedure requires knowledge of the statistical structure of the 
sound ensemble. 

For the visual system, several investigations of the statistical properties of image 
ensembles and their relations to neuronal response properties have recently been 
performed (Field 1987, Atick and Redlich 1990, Ruderman and Bialek 1994). In 
particular, receptive fields of retinal ganglion and LG N cells were found to be consis­
tent with an optimal-code prediction formulated within information theory (Atick 
1992, Dong and Atick 1995), suggesting that the visual periphery may be designed 
as to take advantage of simple statistical properties of visual scenes. 

In order to investigate whether the auditory system is similarly adapted to the 
statistical structure of its own inputs, a good characterization of auditory scenes is 
necessary. In this paper we take a first step in this direction by studying low-order 
statistical properties of several sound ensembles. The quantities we focus on are 
the spectro-temporal amplitude and phase defined as follows. For the sound s(t), 
let SII(t) denote its components at the set of frequencies v, obtained by filtering it 
through a bandpass filter bank centered at those frequencies. Then 

SII(t) = XII (t)cos (vt + rPlI(t)) (1) 

where xlI(t) ~ 0 and rPlI(t) are the spectro-temporal amplitude (STA) and phase 
(STP), respectively. A complete characterization of a sound ensemble with respect 
to a given filter bank must be given by the joint distribution of amplitudes and 
phases at all times, P (XlIl (tl), rPlII (tD, ... , XII" (tn ), rPlI" (t~)). In this paper, however, 
we restrict ourselves to second-order statistics in the time domain and examine the 
distribution and power spectrum of the stochastic processes xlI(t) and rPlI(t). 

Note that the STA and STP are quantities directly relevant to auditory processing. 
The different stages of the auditory system are organized in topographic frequency 
maps, so that cells tuned to the same sound frequency v are organized in stripes 
perpendicular to the direction of frequency progression (see, e.g., Pickles 1988). 
The neuronal responses are thus determined by XII and rPlI' and by XII alone when 
phase-locking disappears above 4-5KHz. 

2 Methods 

Since it is difficult to obtain a reliable sample of an animal's auditory scene over a 
sufficiently long time, we chose instead to analyze several different sound ensembles, 
each consisting of a 15min sound of a certain type. We used cat vocalizations, bird 
songs, wolf cries, environmental sounds, symphonic music, jazz, pop music, and 
speech. The sounds were obtained from commercially available compact discs and 
from recordings of animal vocalizations in two laboratories. No attempt has been 
made to manipulate the recorded sounds in any way (e.g., by removing noise). 

Each sound ensemble was loaded into the computer by 30sec segments at a sam­
pling rate of Is = 44.1KHz. After decimating to Is/2, we performed the follow­
ing frequency-band analysis. Each segment was passed through a bandpass fil-
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Figure 1: Amplitude probability distribution in different frequency bands for four 
sound ensembles. 

ter bank with impulse responses hv{t) to get the narrow-band component signals 
sv{t) = s(t) * hv{t). We used square, non-overlapping filters with center frequen­
cies II logarithmically spaced within the range of 100 - 11025Hz. The filters were 
usually 1/8-octave wide, but we experimented with larger bandwidths as well. The 
amplitude and phase in band II were then obtained via the Hilbert transform 

i J s{t') H [sv{t)] = sv{t) + :; dt' t _ t' = xv{t)ei(vHtPv(t» . (2) 

The frequency content of Xv is bounded by 0 and by the bandwidth of hv (Flanagan 
1980), so keeping the latter below II guarantees that the low frequencies in sv are 
all contained in Xv, confirming its interpretation as the amplitude modulator of 
the carrier cos lit suggested by (1). The phase ,pv, being time-dependent, produces 
frequency modulation. For a given II the results were averaged over all segments. 

3 Amplitude Distribution 

We first examined the STA distribution in different frequency bands II. Fig. 1 
presents historgrams of P{IOglO xv) on a logarithmic scale for four different sound 
ensembles. In order to facilitate a comparison among different bands and ensembles, 
we normalized the variable to have zero mean and unit variance, (loglO xv(t)) = 
0, ((IOglO x v (t))2) = 1, corresponding to a linear gain control. 
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Figure 2: n-point averaged amplitude distributions for v = 800Hz in two sound 
ensembles, using n = 1,20,50,100,200. The speech ensemble is different from the 
one used in Fig. 1. 

As shown in the figure, within a given ensemble, the histograms corresponding to 
different bands lie atop one another. Furthermore, although curves from different 
ensembles are not identical, we found that they could all be fitted accurately to the 
same parametric functional form, given by 

e-'")'Z", 

p(x,,) ex (b5 + X~){J/2 (3) 

with parameter values roughly in the range of 0.1 ~ 'Y ~ 1, 0 ~ f3 ~ 2.5, and 
0.1 ~ bo ~ 0.6. In some cases, a mixture of two distributions of the form (3) was 
necessary, suggesting the presence of two types of sound sources; see, e.g., the slight 
bimodality in the lower parts of Fig. 1. Details of the fitting procedure will be given 
in a longer paper. We found the form (3) to be preserved as the filter bandwidths 
increased. 

Whereas this distribution decays exponentially fast at high amplitudes (p ex 
e-'")'z", /xe), it does not vanish at low amplitudes, indicating a finite probability 
for the occurence of arbitrarily soft sounds. In contrast, the STA of a Gaussian 
noise signal can be shown to be distributed according to p ex x"e-'\z~, which van­
ishes at x" = 0 and decays faster than (3) at large x". Hence, the origin of the large 
dynamic range usually associated with audio signals can be traced to the abundance 
of soft sounds rather than of loud ones. 

4 Amplitude Self-Similarity 

An interesting probe of the STA temporal correlations is the property of scale 
invariance (also called statistical self-similarity). The process x,,(t) is scale-invariant 
when any statistical quantity on a given scale (e.g., at a given temporal resolution, 
determined by the sampling rate) does not change as that scale is varied. To 
observe this property we examined the STA distribution p(x,,) at different temporal 
resolutions, by defining the n-point averaged amplitude 

1 n-l 

x~n)(t) = - L x,,(t + k6.) 
n 

k=O 

(4) 
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Figure 3: Amplitude power spectrum in different frequency bands for four sound 
ensembles. 

(A = 1/ is) and computing its distribution. Fig. 2 displays the histograms of 
P(IOglO x~n) for the II = 800Hz frequency band in two sound ensembles on a loga­
rithmic scale, using n = 1,20,50, 100, 200 which correspond to a temporal resolution 
range of 0.75 - 150msec. Remarkably, the histogram remains unmodified even for 
n = 200. Had the xlI(t + kA) been statistically independent variables, the central 
limit theorem would have predicted a Gaussian p(x~n) for large n. The fact that 
this non-Gaussian distribution preserves its form as n increases implies the presence 
of temporal STA correlations over long periods. 

Notice the analogy between the invariance of p(xII ) under a change in filter band­
width, reported in the previous section, and under a change in temporal resolution. 
An XII with a broad bandwidth is essentially an average over the XII'S with narrow 
bandwidth within the same band, thus bandwidth invariance is a manifestation of 
STA correlations across frequency bands. 

5 Amplitude Power Spectrum 

In order to study the temporal amplitude correlations directly, we computed the 
STA power spectrum BII(w) = (I XII(W) 12) in different bands II, where xII(w) is 
the Fourier transform of the log-amplitude loglO xlI(t) obtained by a 512-point 
FFT. As is well-known, the spectrum BII(w) is the Fourier transform of the log­
amplitude auto-correlation function clI(r) = (IOglO xlI(t) loglO xlI(t + r»). We used 
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the zero-mean, unit-variance normalization of IOglO Xv, which implies the normal­
ization J dJ..J8v (w) = const. of the spectra. Fig. 3 presents 8v as a function of 
the modulation frequency j = w /21r on a logarithmic scale for four different sound 
ensembles. Notice that, as in the case of the STA distribution, the different curves 
corresponding to different frequency bands within a given ensemble lie atop one 
another, including individual peaks; and whereas spectra in different ensembles are 
not identical, we found a simple parametric description valid for all ensembles which 
is given by 

(5) 

with parameter values roughly in the range of 1 ::; a ::; 2.5 and 10-4 ::; Wo ::; 1. This 
is a modified power-law form (note that 8v -+ C / wQ at large w), implying long­
rangle temporal correlations in the amplitude: these correlations decrease slowly (as 
a power law in t) on a time scale of l/wo, beyond which they decay exponentially 
fast. Larger Wo contributes more to the flattening of the spectrum at low frequencies 
(see especially the speech spectra) and corresponds to a shorter correlation time. 
Again, in some cases a sum of two such forms was necessary, corresponding to a 
mixture STA distribution as mentioned above; see, e.g., the environmental sound 
spectra (lower right part of Fig. 3 and Fig. 1). 

The form (5) persisted as the filter bandwidth increased. In the limit of allpass filter 
(not shown) we still observed this form, a fact related to the report of (Voss and 
Clarke 1975) on 1/ j-like power spectra of sound 'loudness' S(t)2 found in several 
speech and music ensembles. 

6 Phase Distribution and Power Spectrum 

Whereas the STA is a non-stationary process which is locally stationary and can 
thus be studied on the appropriate time scale using our methods, the STP is non­
stationary even locally. A more suitable quantity to examine is its rate of change 
d¢v / dt, called the instantaneous frequency. We studied the statistics of I d¢v / dt I 
in different ensembles, and found its distribution to be described accurately by the 
parametric form (3) with 'Y = 0, whereas its power spectrum could be well fitted 
by the form (5). In addition, those quantities were virtually identical in different 
bands within a given ensemble. More details on this work will be provided in a 
longer paper. 

7 Implications for Auditory Processing 

We have shown that auditory scenes have several robust low-order statistical prop­
erties. The STA power spectrum has a modified power-law behavior, which is 
manifested in self-similarity and temporal correlations over a few hundred millisec­
onds. The distribution has an exponential tail and features a finite probability for 
arbitrarily soft sounds. Both the phase and amplitude statistics can be described 
by simple parametrized functional forms which are valid for very different types of 
sounds. These results lead to the conclusion that natural sounds are highly redun­
dant, i.e., they occupy a very small subspace in the space of all possible sounds. It 
would therefore be beneficial for the auditory system to adapt its sound representa­
tion to these statistics, thus improving the animal discrimination ability. Whether 
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the auditory system actually follows this design principle is an empirical question 
which can be attacked by suitable experiments. 

Furthermore, since different frequency bands correspond to different spatial loca­
tions on the basal membrane (Pickles 1988), the fact that the distributions and 
spectra in different bands within a given ansemble are identical suggests the exis­
tence of translation invariance along the cochlear axis, i.e., all the locations in the 
cochlea 'see' the same statistics. This is analogous to the translation invariance 
found in natural images. 

Finally, a recent theory for peripheral visual processing (Dong and Atick 1995) pro­
poses that, in order to maximize information transmission into cortex, the LGN 
performs temporal correlation of retinal images. Within an analogous auditory 
model, the decorrelation time for sound ensembles reported here implies that the 
auditory system should process incoming sounds by a few hundred msec-Iong seg­
ments. The ability of cortical neurons to follow in their response modulation rates 
near and below 10Hz but usually not higher (Schreiner and Urbas 1988) may reflect 
such a process. 
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