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Abstract 

We introduce arc-Ih, a new algorithm for improvement of ANN clas­
sifier performance, which measures the importance of patterns by 
aggregated network output errors. On several artificial benchmark 
problems, this algorithm compares favorably with other resample 
and combine techniques. 

1 Introduction 

The training of artificial neural networks (ANNs) is usually a stochastic and unsta­
ble process. As the weights of the network are initialized at random and training 
patterns are presented in random order, ANNs trained on the same data will typ­
ically be different in value and performance. In addition, small changes in the 
training set can lead to two completely different trained networks with different 
performance even if the nets had the same initial weights. 

Roughly speaking, ANNs have a low bias because of their approximation capabili­
ties, but a rather high variance because of the instability. Recently, several resample 
and combine techniques for improving ANN performance have been proposed. In 
this paper we introduce an new arcing ("~aptive resample and £ombine") method 
called arc-Ih. Contrary to the arc-fs method by Freund & Schapire (1995), which 
uses misclassification rates for adapting the resampling probabilities, arc-Ih uses the 
aggregated network output error. The performance of arc-Ih is compared with other 
techniques on several popular artificial benchmark problems. 
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2 Bias-Variance Decomposition of 0-1 Loss 

Consider the task of classifying a random vector e taking values in X into one of c 
classes G1 , ... , Ge , and let g(.) be a classification function mapping the input space 
on the finite set {I, ... , c}. 

The classification task is to find an optimal function g minimizing the risk 

Rg = IELg(e) = l Lg(x) dF(x) (1) 

where F denotes the (typically unknown) distribution function of e, and L is a 
loss function. In this paper, we consider 0-1 loss only, i.e., the loss is 1 for all 
misclassified patterns and zero otherwise. 

It is well known that the optimal classifier, i.e., the classifier with minimum risk, is 
the Bayes classifier g* assigning to each input x the class with maximum posterior 
probability IP(Gnlx) . These posterior probabilities are typically unknown, hence 
the Bayes classifier cannot be used directly. Note that Rg* = 0 for disjoint classes 
and Rg* > 0 otherwise. 

Let X N = {xt, ... ,xN} be a set of independent input vectors for which the true 
class is known, available for training the classifier. Further, let g X N ( .) denote a 
classifier trained using set X N. The risk Rg x N ~ Rg* of classifier g x N is a random 
variable depending on the training sample X N. In the case of ANN classifiers it 
also depends on the network training, i.e., even for fixed X N the performance of a 
trained ANN is a random variable depending on the initialization of weights and 
the (often random) presentation of the patterns [xn l during training. 

Following Breiman (1996a) we decompose the risk of a classifier into the (minimum 
possible) Bayes error, a systematic bias term of the model class and the variance of 
the classifier within its model class. We call a classifier model unbiased for input x 
if, over replications of all possible training sets X N of size N, network initializations 
and pattern presentations, g picks the correct class more often than any other class. 
Let U = U(g) denote the set of all x E X where g is unbiased; and B = B(g) = X\U 
the set of all points where g is biased. The risk of classifier g can be decomposed as 

Rg = Rg* + Bias(g) + Var(g) 

where Rg* is the risk of the Bayes classifier, 

Bias(g) 

Var(g) 

Rag - Rag* 

Rug - Rug* 

(2) 

and Ra and Ru denote the risk on set Band U, respectively, i.e., the integration in 
Equation 1 is over B or U instead of X, repectively. 

A simpler bias-variance decomposition has been proposed by Kong & Dietterich 
(1995): 

Bias(g) 

Var(g) 

IP{B} 

Rg - Bias(g) 
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The size of the bias set is seen as the bias of the model (i.e., the error the model 
class "typically" makes) . The variance is simply the difference between the actual 
risk and this bias term. This decompostion yields negative variance if the current 
classifier performs better than the average classifier. 

In both decompositions, the bias gives the systematic risk of the model, whereas 
the variance measures how good the current realization is compared to the best 
possible realization of the model. Neural networks are very powerful but rather 
unstable approximators, hence their bias should be low, but the variance may be 
high. 

3 Resample and Combine 

Suppose we had k independent training sets X N1 , .. . , X Nk and corresponding clas­
sifiers 91' . .. , 9k trained using these sets, respectively. We can then combine these 
single classifiers into ajoint voting classifier 9~ by assigning to each input x the class 
the majority of the 9j votes for . If the 9j have low bias, then 9~ should have low 
bias, too. If the model is unbiased for an input x, then the variance of 9~ vanishes 
as k -+ 00 , and 9 v = limk --+ oo 9k is optimal for x. Hence, by resampling training sets 
from the original training set and combining the resulting classifiers into a voting 
classifier it might be possible to reduce the high variance of unstable classification 
algorithms. 

Training sets ANN classifiers 

X N1 t::- 91 

~ 
~ . -." 

...c:,.~ ... . '& .'" 
..... ... 

XN'J t::- 92 
X N . ~~-.... -.. 

-;/ 
9k 

• t::- • 
... -:::1; .. ··-· .. • ... • 

.-.-... . -.. 

X Nk I> 9k 
resample combine 

adapt 

3.1 Bagging 

Breiman (1994, 1996a) introduced a procedure called bagging ("Qootstrap aggre­
gating") for tree classifiers that may also be used for ANNs. The bagging algorithm 
starts with a training set X N of size N. Several bootstrap replica X J.." . .. ,X7v are 
constructed and a neural network is trained on each. These networks are finally 
combined by majority voting. The bootstrap sets X1 consist of N patterns drawn 
with replacement from the original training set (see Efron & Tibshirani (1993) for 
more information on the bootstrap). 
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3.2 Arcing 

3.2.1 Arcing Based on Misclassification Rates 

Arcing, which is a more sophisticated version of bagging, was first introduced by 
Freund & Schapire (1995) and called boosting. The new training sets are not con­
structed by uniformly sampling from the empirical distribution of the training set 
XN " but from a distribution over XN that includes information about previous 
misclassifications. 

Let P~ denote the probability that pattern xn is included into the i-th training set 
X},y and initialize with P~ = 1/ N. Freund and Schapire's arcing algorithm, called 
arc-fs as in Breiman (1996a), works as follows: 

1. Construct a pattern set Xiv by sampling with replacement with probabili­
ties P~ from X N and train a classifier 9i using set xiv. 

2. Set dn = 1 for all patterns that are misclassified by 9i and zero otherwise. 
With fi = L~=lp~dn and!3i = (1- fi)/fi update the probabilities by 

i /3dn HI _ Pn i 
Pn - N 'd 

Ln=l P~(3i n 

3. Set i := i + 1 and repeat. 

After k steps, 91' . . . ,gk are combined with weighted voting were each 9j'S vote has 
weight log!3i. Breiman (1996a) and Quinlan (1996) compare bagging and arcing for 
CART and C4.5 classifiers, respectively. Both bagging and arc-fs are very effective 
in reducing the high variance component of tree classifiers, with adaptive resampling 
being a bit better than simple bagging. 

3.2.2 Arcing Based on Network Error 

Independently from the arcing and bagging procedures described above, adaptive 
resampling has been introduced for active pattern selection in leave-k-out cross­
validation CV / APS (Leisch & Jain, 1996; Leisch et al., 1995). Whereas arc-fs (or 
Breiman's arc-x4) uses only the information whether a pattern is misclassified or 
not, in CV / APS the fact that MLPs approximate the posterior probabilities of the 
classes (Kanaya & Miyake, 1991) is utilized, too. We introduce a simple new arcing 
method based on the main idea of CV / APS that the "importance" of a pattern for 
the learning process can be measured by the aggregated output error of an MLP 
for the pattern over several training runs. 

Let the classifier 9 be an ANN using l-of-c coding, i.e., one output node per class, 
the target t(x) for each input x is one at the node corresponding to the class of 
x and zero at the remaining output nodes . Let e(x) = It(x) - 9(x))12 be the 
squared error ofthe network for input x. Patterns that 'repeatedly have high output 
errors are somewhat harder to learn for the network and therefore their resampling 
probabilities are increased proportionally to the error. Error-dependent resampling 



526 F. Leisch and K. Hornik 

introduces a "grey-scale" of pattern-importance as opposed to the "black and white" 
paradigm of misclassification dependent resampling. 

Again let p~ denote the probability that pattern xn is included into the i-th training 
set Xiv and initialize with p; = 1/ N. Our new arcing algorithm, called arc-Ih, works 
as follows: 

1. Construct a pattern set xiv by sampling with replacement with probabili­
ties p~ from X N and train a classifier gj using set xiv. 

2. Add the network output error of each pattern to the resampling probabili­
ties: 

3. Set i := i + 1 and repeat. 

After k steps, g1' ... ,gk are combined by majority voting. 

3.3 Jittering 

In our experiments, we also compare the above resample and combine methods with 
jittering, which resamples the training set by contaminating the inputs by artificial 
noise. No voting is done, but the size of the training set is increased by creation of 
artificial inputs "around" the original inputs, see Koistinen & Holmstrom (1992). 

4 Experiments 

We demonstrate the effects of bagging and arcing on several well known artificial 
benchmark problems. For all problems, i - h - c single hidden layer perceptrons 
(SHLPs) with i input, h hidden and c output nodes were used. The number of hid­
den nodes h was chosen in a way that the corresponding networks have reasonably 
low bias. 

2 Spirals with noise: 2-dimensional input, 2 classes. Inputs with uniform noise 
around two spirals. N = 300. Rg* = 0%. 2-14-2 SHLP. 

Continuous XOR: 2-dimensional input, 2 classes. Uniform inputs on the 2-
dimensional square -1 :::; x, y :::; 1 classified in the two classes x * y ~ 0 and 
x * y < O. N = 300. Rg* = 0%. 2-4-2 SHLP. 

Ringnorm: 20-dimensional input, 2 classes. Class 1 is normal wit mean zero and 
covariance 4 times the identity matrix. Class 2 is a unit normal with mean 
(a, a, ... , a). a = 2/.../20. N = 300. Rg* = 1.2%. 20-4-2 SHLP. 

The first two problems are standard benchmark problems (note however that we 
use a noisy variant of the standard spirals problem); the last one is, e.g., used in 
Breiman (1994, 1996a). 
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All experiments were replicated 50 times, in each bagging and arcing replication 
10 classifiers were combined to build a voting classifier. Generalization errors were 
computed using Monte Carlo techniques on test sets of size 10000. 

Table 1 gives the average risk over the 50 replications for a standard single SHLP, 
an SHLP trained on a jittered training set and for voting classifiers using ten votes 
constructed with bagging, arc-Ih and arc-fs, respectively. The Bayes risk ofthe spiral 
and xor example is zero, hence the risk of a network equals the sum of its bias and 
variance. The Bayes risk of the ringnorm example is 1.2%. 

Breiman Kong & Dietterich 

Rg Bias(g) Var(g) Bias(g) Var(g) 

2 Spirals 
standard 7.75 0.32 7.43 0.82 6.93 
jitter 6.53 0.26 6.27 0.52 6.02 
bagging 4.39 0.35 4.04 0.68 3.71 
arc-fs 4.31 0.35 3.96 0.60 3.71 
arc-Ih 4.32 0.31 4.01 0.72 3.60 

XOR 
standard 6.54 0.53 6.01 1.32 5.22 
jitter 6.29 0.37 5.92 1.08 5.21 
bagging 3.69 0.59 3.09 1.22 2.47 
arc-fs 3.73 0.58 3.15 1.12 2.61 
arc-Ih 3.58 0.50 3.08 1.20 2.38 

Ringnorm 
standard 18.64 9.19 8.26 13.84 4.80 
jitter 18.56 9.03 8.34 13.72 4.84 
bagging 15.72 9.61 4.91 13.54 2.18 
arc-fs 15.71 9.70 4.81 13.58 2.13 
arc-Ih 15.63 9.30 5.13 13.20 2.43 

Table 1: Bias-variance decompositions. 

The variance part was drastically reduced by the res ample & combine methods, with 
only a negligible change in bias. Note the low bias in the spiral and xor problems. 
ANNs obviously can solve these classification tasks (one could create appropriate 
nets by hand), but of course training cannot find the exact boundaries between the 
classes. Averaging over several nets helps to overcome this problem. The bias in 
the ringnorm example is rather high, indicating that a change of network topology 
(bigger net, etc.) or training algorithm (learning rate, etc.) may lower the overall 
risk. 

5 Summary 

Comparison of of the resample and combine algorithms shows slight advantages 
for adaptive resampling, but no algorithm dominates the other two. Further im-
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provements should be possible based on a better understanding of the theoretical 
properties of resample and combine techniques. These issues are currently being 
investigated. 
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