
U sing Curvature Information for
Fast Stochastic Search

Genevieve B. Orr
Dept of Computer Science

Willamette University
900 State Street

Salem, OR 97301
gorr@willamette.edu

Todd K. Leen
Dept of Computer Science and Engineering

Oregon Graduate Institute of
Science and Technology

P.O.Box 91000, Portland, Oregon 97291-1000
tleen@cse.ogi.edu

Abstract

We present an algorithm for fast stochastic gradient descent that
uses a nonlinear adaptive momentum scheme to optimize the late
time convergence rate. The algorithm makes effective use of cur­
vature information, requires only O(n) storage and computation,
and delivers convergence rates close to the theoretical optimum.
We demonstrate the technique on linear and large nonlinear back­
prop networks.

Improving Stochastic Search

Learning algorithms that perform gradient descent on a cost function can be for­
mulated in either stochastic (on-line) or batch form. The stochastic version takes
the form

Wt+l = Wt + J1.t G(Wt, Xt) (1)
where Wt is the current weight estimate, J1.t is the learning rate, G is minus the
instantaneous gradient estimate, and Xt is the input at time t i . One obtains the
corresponding batch mode learning rule by taking J1. constant and averaging Gover
all x.

Stochastic learning provides several advantages over batch learning. For large
datasets the batch average is expensive to compute. Stochastic learning eliminates
the averaging. The stochastic update can be regarded as a noisy estimate of the
batch update, and this intrinsic noise can reduce the likelihood of becoming trapped
in poor local optima [1, 2J.

1 We assume that the inputs are i.i.d. This is achieved by random sampling with re­
placement from the training data.

Using Curvature Informationfor Fast Stochastic Search 607

The noise must be reduced late in the training to allow weights to converge. After
settling within the basin of a local optimum W., learning rate annealing allows con­
vergence of the weight error v == W - w •. It is well-known that the expected squared
weight error, E[lv12] decays at its maximal rate ex: l/t with the annealing schedule
flo/to FUrthermore to achieve this rate one must have flo > flcnt = 1/(2Amin) where
Amin is the smallest eigenvalue of the Hessian at w. [3, 4, 5, and references therein].
Finally the optimal flo, which gives the lowest possible value of E[lv12] is flo = 1/ A.
In multiple dimensions the optimal learning rate matrix is fl(t) = (l/t) 1-£-1 ,where
1-£ is the Hessian at the local optimum.

Incorporating this curvature information into stochastic learning is difficult for two
reasons. First, the Hessian is not available since the point of stochastic learning is
not to perform averages over the training data. Second, even if the Hessian were
available, optimal learning requires its inverse - which is prohibitively expensive to
compute 2.

The primary result of this paper is that one can achieve an algorithm that behaves
optimally, i.e. as if one had incorporated the inverse of the full Hessian, without
the storage or computational burden. The algorithm, which requires only V(n)
storage and computation (n = number of weights in the network), uses an adaptive
momentum parameter, extending our earlier work [7] to fully non-linear problems.
We demonstrate the performance on several large back-prop networks trained with
large datasets.

Implementations of stochastic learning typically use a constant learning rate during
the early part of training (what Darken and Moody [4] call the search phase) to ob­
tain exponential convergence towards a local optimum, and then switch to annealed
learning (called the converge phase). We use Darken and Moody's adaptive search
then converge (ASTC) algorithm to determine the point at which to switch to l/t
annealing. ASTC was originally conceived as a means to insure flo > flcnt during
the annealed phase, and we compare its performance with adaptive momentum as
well. We also provide a comparison with conjugate gradient optimization.

1 Momentum in Stochastic Gradient Descent

The adaptive momentum algorithm we propose was suggested by earlier work on
convergence rates for annealed learning with constant momentum. In this section
we summarize the relevant results of that work.

Extending (1) to include momentum leaves the learning rule

wt+ 1 = Wt + flt G (Wt, x t) + f3 (Wt - Wt -1) (2)

where f3 is the momentum parameter constrained so that 0 < f3 < 1. Analysis of
the dynamics of the expected squared weight error E[Ivl2] with flt = flo/t learning
rate annealing [7, 8] shows that at late times, learning proceeds as for the algorithm
without momentum, but with a scaled or effective learning rate

_ flo ()
fleff = 1 _ f3 . 3

This result is consistent with earlier work on momentum learning with small, con­
stant fl, where the same result holds [9, 10, 11]

2Venter [6] proposed a I-D algorithm for optimizing the convergence rate that estimates
the Hessian by time averaging finite differences of the gradient and scalin~ the learning
rate by the inverse. Its extension to multiple dimensions would require O(n) storage and
O(n3) time for inversion. Both are prohibitive for large models.

608 G. B. Orr and T. K. Leen

If we allow the effective learning rate to be a matrix, then, following our comments
in the introduction, the lowest value of the misadjustment is achieved when /leff =
ti- 1 [7, 8]. Combining this result with (3) suggests that we adopt the heuristic3

/3opt = I - /loti. (4)
where /3opt is a matrix of momentum parameters, I is the identity matrix, and /lo
is a scalar.

We started with a scalar momentum parameter constrained by 0 < /3 < 1. The
equivalent constraint for our matrix /3opt is that its eigenvalues lie between 0 and
1. Thus we require /lo < 1/ Amoz where Amoz is the largest eigenvalue of ti.

A scalar annealed learning rate /loft combined with the momentum parameter /3opt

ought to provide an effective learning rate asymptotically equal to the optimal learn­
ing rate ti- 1. This rate 1) is achieved without ever performing a matrix inversion
on ti and 2) is independent of the choice of /lo, subject to the restriction in the
previous paragraph.

We have dispensed with the need to invert the Hessian, and we next dispense with
the need to store it. First notice that, unlike its inverse, stochastic estimates of ti
are readily available, so we use a stochastic estimate in (4). Secondly according to
(2) we do not require the matrix /3opt, but rather /3opt times the last weight up­
date. For both linear and non-linear networks this dispenses with the O(n 2) storage
requirements. This algorithm, which we refer to as adaptive momentum, does not
require explicit knowledge or inversion of the Hessian, and can be implemented very
efficiently as is shown in the next section.

2 Implementation

The algorithm we propose is

Wt+! = Wt + /It G(Wt, Xt) + (I - /lo iit) ~Wt (5)

where ~Wt = Wt - Wt-l and iit is a stochastic estimate of the Hessian at time t.

We first consider a single layer feedforward linear network. Since the weights con­
necting the inputs to different outputs are independent of each other we need only
discuss the case for one output node. Each output node is then treated identically.

For one output node and N inputs, the Hessian is ti = (xxT}z E n NxN where 0:1:
indicates expectation over the inputs x and where xT is the transpose of x. The
single-step estimate of the hessian is then just iit = xtxi. The momentum term
becomes

~ T T (I - /lotit) ~Wt = (I - /lo(XtXt))~Wt = ~Wt - /loXt(X t ~Wt). (6)
Written in this way, we note that there is no matrix multiplication, just the vector
dot product xi ~Wt and vector addition that are both O(n). For M output nodes,
the algorithm is then O(Nw) where Nw = NM is the total number weights in the
network.

For nonlinear networks the problem is somewhat more complicated. To compute
iit~Wt we use the algorithm developed by Pearlmutter [12] for computing the prod­
uct of the hessian times an arbitrary vector.4 The equivalent of one forward-back

3We refer to (4) as a heuristic since we have no theoretical results on the dynamics of
the squared weight error for learning with this matrix of momentum parameters.

·We actually use a slight modification that calculates the linearized Hessian times a
vector: D f @D f ~Wt where D f is the Jacobian of the network output (vector) with respect
to the weights, and @ indicates a tensor product.

Using Curvature Information for Fast Stochastic Search

Log(E[Ivl2 1) I ~o=O·1 I
·1

·2

·3
B=adaptlve

2 3 5

a) Log(t) b)

Log(E[Iv12])
'--------""_--..flo=O.1

·1

·2L.-------
flo=O·01

·3

2 3
Log(t)

609

I B=adaptlve I

Figure 1: 2·D LMS Simulations: Behavior of log(E[lvI2]) over an ensemble of 1000 net­
works with Al = .4 and Al = 4, (J'~ = 1. a) 1-'0 = 0.1 with various 13. Dashed curve
corresponds to adaptive momentum. b) 13 adaptive for various 1-'0.

propagation is required for this calculation. Thus, to compute the entire weight up­
date requires two forward-backward propagations, one for the gradient calculation
and one for computing iltllWt.

The only constraint on JJo is that JJo < 1/ Amax. We use the on-line algorithm
developed by LeCun, Simard, and Pearlmutter [13] to find the largest eigenvalue
prior to the start of training.

3 Examples

In the following two subsections we examine the behavior of annealed learning with
adaptive momentum on networks previously trained to a point close to an optimum,
where the noise dominates. We look at very simple linear nets, large linear nets, and
a large nonlinear net. In section 3.3 we couple adaptive momentum with automatic
switching from constant to annealed learning.

3.1 Linear Networks

We begin with a simple 2-D LMS network. Inputs Xt are gaussian distributed with
zero mean and the targets d at each timestep t are dt = W,!, Xt + Et where Et is zero
mean gaussian noise, and W* is the optimal weight vector. The weight error at time
t is just v == Wt - w*.

Figure 1 displays results for both constant and adaptive momentum with averages
computed over an ensemble of 1000 networks. Figure (la) shows the decay of E[lv12]

for JJo = 0.1 and various values of f3. As momentum is increased, the convergence
rate increases. The optimal scalar momentum parameter is f3 == (1- JJOAmin) = .96.
Adaptive momentum achieves essentially the same rate of convergence without prior
knowledge of the Hessian.

Figure 1b shows the behavior of E[lvI 2] for various JJo when adaptive momentum
is used. One can see that after a few hundred iterations the value of E[lv12] is
independent of JJo (in all cases JJo < l/Amax < JJcrit).

Figure 2 shows the behavior of the misadjustment (mean squared error in ex­
cess of the optimum~ for a 4-D LMS problem with a large condition number
P == Amax/Arr;in = 10 . We compare 3 cases:. 1) the opt~mal learning rate matrix
JJo = 1i- wIthout momentum, 2) JJo = .5 wIth the optzmal constant momentum
matrix f3 = I - JJo 1i, and 3) JJo = .5 with the adaptive momentum. All three
cases show similar behavior, showing the efficacy with which the matrix momentum

610

10.

0.1

0.001

Figure 2: 4-D LMS with p = 105 : Plot
displays misadjustment. Annealing starts at
t = 10. For {3adapt and {3 = I - 1-'01i, we use
1-'0 = .5. Each curve is an average of 10 runs.

G. B. Orr and T. K. Leen

10. 100. 1000. 10000. 5 6
I 10 10

Figure 3: Linear Prediction: 1-'0 = 0.26.
Curves show constant learning rate, anneal­
ing started at t = 50 without momentum,
and with adaptive momentum.

mocks up the optimal learning rate matrix J1.0 = 1£ -1, and lending credence to the
stochastic estimate of the Hessian used in adaptive momentum.

We next consider a large linear prediction problem (128 inputs, 16 outputs and
eigenvalues ranging from 1.06 x 10-5 to 19.98 - condition number p = 1.9 X 106)5.
Figure 3 displays the misadjustment for 1) annealed learning with f3 = f3adapt,

2) annealed learning with f3 = 0, and 3) constant learning rate (for comparison
purposes). As before, we have first trained (not shown completely) at constant
learning rate J1.0 = .026 until the MSE and the weight error have leveled out. As
can be seen f3adapt does much better than annealing without momentum.

3.2 Phoneme Classification

We next use phoneme classification as an example of a large nonlinear problem.
The database consists of 9000 phoneme vectors taken from 48 50-second speech
monologues. Each input vector consists of 70 PLP coefficients. There are 39 target
classes. The architecture was a standard fully connected feedforward network with
71 (includes bias) input nodes, 70 hidden nodes, and 39 output nodes for a total of
7700 weights.

We first trained the network with constant learning rate until the MSE flattened
out. At that point we either annealed without momentum, annealed with adaptive
momentum, or used ASTC (which attempts to adjust J1.0 to be above J1.crit - see
next section). When annealing was used without momentum, we found that the
noise went away, but the percent of correctly classified phonemes did not improve.
Both the adaptive momentum and ASTC resulted in significant increases in the
percent correct, however, adaptive momentum was significantly better than ASTC.
In the next section, we examine this problem in more detail.

3.3 Switching on Annealing

A complete algorithm must choose an appropriate point to change from constant J1.

search to annealed learning. We use Moody and Darken's ASTC algorithm [4, 14]
to accomplish this. ASTC measures the roughness of trajectories, switching to 1ft
annealing when the trajectories become very rough - an indication that the noise
in the updates is dominating the algorithm's behavior. In an attempt to satisfy

5Prediction of a 4 X 4 block of image pixels from the surrounding 8 blocks.

Using Curvature Information for Fast Stochastic Search 611

50 50

40 40 -
~30

0

~30
0 0
(.)20 (.)20

;,I! ~ 0 0

10 10

100000 qo 20 50 100
a) b) epoch

Figure 4: Phoneme Classification: Percent Correct a) ASTC without momentum (bottom
curve) and adaptive momentum (top) as function of the number of input presentations.
b) Conjugate Gradient Descent - one epoch equals one pass through the data, i.e. 9000
input presentations.

J.lo > J.lcrit, ASTC can also switch back to constant learning when trajectories
become too smooth.

We return to the phoneme problem using three different training methods: 1) ASTC
without momentum (with switching back and forth between annealed and constant
learning), 2) adaptive momentum with annealing turned on when ASTC first sug­
gests the transition (but no subsequent return to constant learning rate), and 3)
standard conjugate gradient descent.

Figure 4a compares ASTC (no momentum) with adaptive momentum (using ASTC
to turn on annealing). After annealing is turned on, the classification accuracy
improves far more quickly with adaptive momentum.

Figure 4b displays the classification performance as a function of epoch using con­
jugate gradient descent (CGD). After 100 passes through the 9000 example dataset
(900,000 presentations), the classification accuracy is 39.6%, or 7% below adaptive
momentum's performance at 100,000 presentations. Note also that adaptive mo­
mentum is continuing to improve the optimization, while the ASTC and conjugate
gradient descent curves have flattened out.

The cpu time used for the optimization was about the same for the CGD and adap­
tive momentum algorithms. It thus appears that our implementation of adaptive
momentum costs about 9 times as much per pattern as CGD. We believe that the
performance can be improved. Our complexity analysis [8] predicts a 3:1 cost ratio,
rather than 9:1, and optimization comparable to that applied to the CGD code6

should enhance the run-time performance of CGD.

For this problem, the performance of the two algorityms on the test set (no shown
on graph) is not much different (31.7% for CGD versus 33.4% for adaptive momen­
tum. Howver we are concerned here with the efficiency of the optimization, not
generalization performance. The latter depends on dataset size and regularization
techniques, which can easily be combined with any optimizer.

4 Summary

We have presented an efficient O(n) stochastic algorithm with few adjustable param­
eters that achieves fast convergence during the converge phase for both linear and
nonlinear problems. It does this by incorporating curvature information without

6CGD was performed using nopt written by Etienne Barnard and made available
through the Center for Spoken Language Understanding at the Oregon Graduate Institute.

612 G. B. Orr and T. K. Leen

explicit computation of the Hessian. We also combined it with a method (ASTC)
for detecting when to make the transition between search and converge regimes.

Acknowledgments

The authors thank Yann LeCun for his helpful critique. This work was supported
by EPRl under grant RPB015-2 and AFOSR under grant FF4962-93-1-0253.

References

[1] Genevieve B. Orr and Todd K. Leen. Weight space probability densities in stochastic
learning: II. Transients and basin hopping times. In Giles, Hanson, and Cowan,
editors, Advances in Neural Information Processing Systems, vol. 5, San Mateo, CA,
1993. Morgan Kaufmann.

[2] William Finnoff. Diffusion approximations for the constant learning rate backprop­
agation algorithm and resistence to local minima. In Giles, Hanson, and Cowan,
editors, Advances in Neural Information Processing Systems, vol. 5, San Mateo, CA,
1993. Morgan Kaufmann.

[3] Larry Goldstein. Mean square optimality in the continuous time Robbins Monro
procedure. Technical Report DRB-306, Dept. of Mathematics, University of Southern
California, LA, 1987.

[4] Christian Darken and John Moody. Towards faster stochastic gradient search. In J.E.
Moody, S.J. Hanson, and R.P. Lipmann, editors, Advances in Neural Information
Processing Systems 4. Morgan Kaufmann Publishers, San Mateo, CA, 1992.

[5] Halbert White. Learning in artificial neural networks: A statistical perspective. Neu­
ral Computation, 1:425-464, 1989.

[6] J. H. Venter. An extension of the robbins-monro procedure. Annals of Mathematical
Statistics, 38:117-127, 1967.

[7] Todd K. Leen and Genevieve B. Orr. Optimal stochastic search and adaptive mo­
mentum. In J.D. Cowan, G. Tesauro, and J . Alspector, editors, Advances in Neural
Information Processing Systems 6, San Francisco, CA., 1994. Morgan Kaufmann Pub­
lishers.

[8] Genevieve B. Orr. Dynamics and Algorithms for Stochastic Search. PhD thesis,
Oregon Graduate Institute, 1996.

[9] Mehmet Ali Tugay and Yalcin Tanik. Properties of the momentum LMS algorithm.
Signal Processing, 18:117-127, 1989.

[10] John J. Shynk and Sumit Roy. Analysis of the momentum LMS algorithm. IEEE
Transactions on Acoustics, Speech, and Signal Processing, 38(12):2088-2098, 1990.

[11] W. Wiegerinck, A. Komoda, and T. Heskes. Stochastic dynamics of learning with
momentum in neural networks. Journal of Physics A, 27:4425-4437, 1994.

[12] Barak A. Pearlmutter. Fast exact multiplication by the hessian. Neural Computation,
6:147-160, 1994.

[13] Yann LeCun, Patrice Y. Simard, and Barak Pearlmutter. Automatic learning rate
maximization by on-line estimation of the hessian's eigenvectors. In Giles, Hanson,
and Cowan, editors, Advances in Neural Information Processing Systems, vol. 5, San
Mateo, CA, 1993. Morgan Kaufmann.

[14J Christian Darken. Learning Rate Schedules for Stochastic Gradient Algorithms. PhD
thesis, Yale University, 1993.

