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Abstract 

Given unlimited computational resources, it is best to use a crite­
rion of minimal expected generalisation error to select a model and 
determine its parameters. However, it may be worthwhile to sac­
rifice some generalisation performance for higher learning speed. 
A method for quantifying sub-optimality is set out here, so that 
this choice can be made intelligently. Furthermore, the method 
is applicable to a broad class of models, including the ultra-fast 
memory-based methods such as RAMnets. This brings the added 
benefit of providing, for the first time, the means to analyse the 
generalisation properties of such models in a Bayesian framework . 

1 Introduction 

In order to quantitatively predict the performance of methods such as the ultra-fast 
RAMnet, which are not trained by minimising a cost function, we develop a Bayesian 
formalism for estimating the generalisation cost of a wide class of algorithms. 

We consider the noisy interpolation problem, in which each output data point if 
results from adding noise to the result y = f(x) of applying unknown function f 
to input data point x, which is generated from a distribution P (x). We follow a 
similar approach to (Zhu & Rohwer, to appear 1996) in using a Gaussian process to 
define a prior over the space of functions, so that the expected generalisation cost 
under the posterior can be determined. The optimal model is defined in terms of 
the restriction of this posterior to the subspace defined by the model. The optimum 
is easily determined for linear models over a set of basis functions. We go on to 
compute the generalisation cost (with an error bar) for all models of this class, 
which we demonstrate to include the RAMnets. 
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Section 2 gives a brief overview of RAMnets. Sections 3 and 4 supply the formalism 
for computing expected generalisation costs under Gaussian process priors. Numer­
ical experiments with this formalism are presented in Section 5. Finally, we discuss 
the current limitations of this technique and future research directions in Section 6. 

2 RAMnets 

The RAMnet, or n-tuple network is a very fast I-pass learning system that of­
ten gives excellent results competitive with slower methods such as Radial Basis 
Function networks or Multi-layer Perceptrons (Rohwer & Morciniec, 1996). Al­
though a semi-quantitative theory explains how these systems generalise, no formal 
framework has previously been given to precisely predict the accuracy of n-tuple 
networks. 

Essentially, a RAMnet defines a set of "features" which can be regarded as Boolean 
functions of the input variables. Let the ath feature of x be given by a {O, 1 }-valued 
function 4>a(x). We will focus on the n-tuple regression network (Allinson & Kolcz, 
1995), which outputs 

(1) 

in response to input x, if trained on the set of N samples {X(N)Y(N)} = {(xi, !I)}~l' 
Here U(x , x') = E 4>a(x)4>a(x' ) can be seen to play the role of a smoothing kernel, 

a 
provided that it turns out to have a suitable shape. It is well-know that it does, for 
appropriate choices of feature sets. The strength of this method is that the sums 
over training data can be done in one pass, producing a table containing two totals 
for each feature. Only this table is required for recognition. 

It is interesting to note that there is a familiar way to expand a kernel into the form 
U(x, x') = E 4>a(x)4>a(x' ), at least when U(x, x') = U(x - x'), if the range of 4> is 

a 

not restricted to {O, I}: an eigenfunction expansion l . Indeed, principal component 
analysis2 applied to a Gaussian with variance V shows that the smallest feature 
set for a given generalisation cost consists of the (real-valued) projections onto 
the leading eigenfunctions of V. Be that as it may, the treatment here applies to 
arbitrary feature sets. 

3 Bayesian inference with Gaussian priors 

Gaussian processes provide a diverse set of priors over function spaces. To 
avoid mathematical details of peripheral interest, let us approximate the infinite­
dimensional space of functions by a finite-dimensional space of discretised functions, 
so that function f is replaced by high-dimensional vector f, and f(x) is replaced 
by fx , with f(x) ~ fx within a volume Llx around x. We develop the case of scalar 
functions f, but the generalisation to vector-valued functions is straightforward. 

1 In physics, this is essentially the mode function expansion of U-1 , the differential 
operator with Green's function U. 

2V-1 needs to be a compact operator for this to work in the infinite-dimensional limit. 



The Generalisation Cost of RAMnets 255 

We assume a Gaussian prior on f, with zero mean and covariance V /0:: 

(2) 

where Za = det(~:V)t. The overall scale of variation of f is controlled by 0:. 

Illustrative samples of the functions generated from various choices of covariance 
are given in (Zhu & Rohwer, to appear 1996). With q:c/f3 denoting the (possibly 
position-dependent) variance of the Gaussian output noise, the likelihood of outputs 
YeN) given function f and inputs X(N) is 

p(Y(N)IX(N),f) = (1/Z,8)exp-~L(f:c. _yi)q;.l(f:c' _yi) (3) 
i 

where Z~ = n ¥q:c. = det [¥Q] with Qij = q:c. 6ij. 
i 

Because f and X(N) are independent the joint distribution is 

( I) ( I ) ) ( !.bTAb+C)/( ) -!'(f-Ab)TA-1(f-Ab) P Y(N) , f X(N) = P YeN) f , X(N) P (f = e 2 ZaZ,8 e ~ 

where 6:c:c. is understood to be 1 whenever xi is in the same cell of the discreti­
sation ~ x, and A;;, = o:V;;, + f3'L.q;,I6:c,:c.6x',:c" b:c = f3'L.yiq;.I6:c,:c" and 

i i 
C = - ~f3 'L. yi q;,Iyi. One can readily verify that 

i 

A:c:c' = (ljo:)V:c:c,+ LV:c:ctKtuV:c,,:c, 
tu 

where K is the N x N matrix defined by 

The posterior is readily determined to be 

* where f = Ab is the posterior mean estimate of the true function f. 

4 Calculation of the expected cost and its variance 

m 

(5) 

(6) 

(4) 

Let us define the cost of associating an output f:c of the model with an input x that 
actually produced an output y as 

m m 2 
C(f:c, y) = Hf:c - y) r:c 

where r:c is a position dependent cost weight. 
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The average of this cost defines a cost functional, given input data X(N): 

m J m C( f , flx(N» = C(fx, y)P (XIX(N») P (ylx, f) dxdy. (8) 

This form is obtained by noting that the function f carries no information about 
the input point x, and the input data X(N) supplies no information about y beyond 
that supplied by f. The distributions in (8) are unchanged by further conditioning 

m m 
on Y(N), so we could write C( f, flx(N» = C( f, flx(N)' YeN»~. This cost functional 
therefore has the posterior expectation value 

and variance 

Plugging in the distributions (2) (applied to a single sample), (3) and (7) leads to: 

* m T * m tr [QR] 
(ClX(N),Y(N») = 'ttr[AR] + Hf-f) R(f-f)+ 2/3 (11) 

where the diagonal matrices Rand Q have the elements Rxx' = P(XIX)TxAxbx,x' 
and Qxx' = qxbxx'. 

Similar calculations lead to the expression for the variance 

(12) 

m * 
where the elements of Fare Fxx' = (fx - fx)bx,x'. 

m . 
Note that the RAMnet (1) has the form f x = 2: J Xxi yl linear in the output data 

i 

YeN), with J xx' = U(x, xi)/ 2:j U(x, Xj). Let us take V to have the form Vex, x') = 
p(x )G(x - x')p(x'), combining translation-invariant and non-invariant factors in a 
plausible way. Then with the sums over x replaced by integrals, (11) becomes 
explicitly 

2 (ClX(N), YeN») = ~ J dxP (XIX(N») qxTx + ± J P (XIX(N») Txp;Gxx 

+.!. LPxtKtuPx" J dxP (XIX(N») Txp;Gx"xGxxt 
0" tu 

+0"2 LyUKutPxt J dxP (XIX(N») Txp;GxtxGxxopx.K$vYv 
tUV$ 

+20" LyUKutpxt J dxP (XIX(N») TxPxGxtxJxxvyV 
tuv 

+ Lyu J dxP (XIX(N») TxJx"xJxxvyv. (13) 
uv 
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b) Dislribulion of Ihe cost C 

Figure 1: a) The lower figure shows the input distribution. The upper figure shows 
the true function f generated from a Gaussian prior with covariance matrix V (dot-

• 
ted line), the optimal function f = Ab (solid line) and the suboptimal solution 
m 
f (dashed line). b )The distribution of the cost function obtained by generating 
functions from the posterior Gaussian with covariance matrix A and calculating 
the cost according to equation 14. The mean and one standard deviation calcu­
lated analytically and numerically are shown by the lower and upper error bars 
respecti vely. 

Taking P (XIX(N)) to be Gaussian (the maximum likelihood estimate would be 
reasonable) and p, r, and q uniform, the first four integrals are straightforward. 
The latter two involve the model J, and were evaluated numerically in the work 
reported below. 

5 Numerical results 

We present one numerical example to illustrate the formalism, and another to illus­
trate its application. 

For the first illustration, let the input and output variables be one dimensional real 
numbers. Let the input distribution P (x) be a Gaussian with mean I':e = 0 and 
standard deviation (1:e = 0.2. Nearly all inputs then fall within the range [-1,1]' 
which we uniformly quantise into 41 bins. The true function f is generated from a 
Gaussian distribution with 1', = 0 and 41 x 41 covariance matrix V with elements 
V:e:e' = e-1:e-:e'I . 50 training inputs x were generated from the input distribution 
and assigned corresponding outputs y = f:e + (, where ( is Gaussian noise with zero 
mean and standard deviation Jq:el/3 = 0.01. The cost weight r:e = 1. 

The inputs were thermometer coded3 over 256 bits, from which 100 subsets of 30 
bits were randomly selected. Each of the 100 x 230 patterns formed over these 
bits defines a RAMnet feature which evaluates to 1 when that pattern is present 
in the input x. (Only those features which actually appear in the data need to be 
tabulated.) The 50 training data points were used in this way to train an n-tuple 

3The first 256(x + 1)/2 bits are set to 1, and the remaining bits to O. 
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Figure 2: a) Neal's Regression problem. The true function f is indicated by a dotted 
• m 

line, the optimal function f is denoted by a solid line and the suboptimal solution f 
is indicated by a dashed line. Circles indicate the training data. b) Dependence of 
the cost prediction on the values of parameters a and O'f. The cost evaluated from 
the test set is plotted as a dashed line, predicted cost is shown as a solid line with 
one standard deviation indicated by a dotted line. 

m • 
regression network. The input distribution and functions f, f , f are plotted III 

figure 1a. 

• 
A Gaussian distribution with mean f and posterior covariance matrix A was then 
used to generate 104 functions . For each such function fp, the generalisation cost 

(14) 
x 

was computed. A histogram of these costs appears in figure 1b, together with the 
theoretical and numerically computed average generalisation cost and its variance. 
Good agreement is evident . 

Another one-dimensional problem illustrates the use of this formalism for predicting 
the generalisation performance of a RAMnet when the prior over functions can only 
be guessed. The true function , taken from (Neal, 1995) is given by 

fx = 0.3 + OAx + 0.5 sin(2.7x) + 1.1/(1 + x2 ) + ( (15) 

where the Gaussian noise variable ( has mean I'f = 0 and standard deviation 
Jq:c//3 == 0.1. The cost weight Tx == 1. The training and test set each comprised 
100 data-points. The inputs were generated by the standard normal distribution 
(I'x = 0, O':c = 1) and converted into the binary strings using a thermometer code. 
The input range [-3,3] was quantised into 61 uniform bins. 

m • 
The training set and the functions f , f , f are shown on figure 2a for a = 0.1. The 
function space covariance matrix was defined to have the Gaussian form V xx' 

_1 (., _ .,')2 

e 2 ,,; where O'f = 1.0. 
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(Jf is the correlation length of the functions, which is of order 1, judging from 
figure 2a. The overall scale of variation is 1/ va, which appears to be about 3, 
so Q' should be about 1/9. Figure 2b shows the expected cost as a function of Q' 

for various choices of (Jf, with error bars on the (Jf = 1.0 curve. The actual cost 
m 

computed from the test set according to C = t E(yi -fx? is plotted with a dashed 
i 

line. There is good agreement around the sensible values of Q' and (Jf. 

6 Conclusions 

This paper demonstrates that unusual models, such as the ultra-fast RAMnets 
which are not trained by directly optimising a cost function, can be analysed in a 
Bayesian framework to determine their generalisation cost. Because the formalism 
is constructed in terms of distributions over function space rather than distributions 
over model parameters, it can be used for model comparison, and in particular to 
select RAMnet parameters. 

The main drawback with this technique, as it stands, is the need to numerically 
integrate two expressions which involve the model. This difficulty intensifies rapidly 
as the input dimension increases. Therefore, it is now a research priority to search 
for RAMnet feature sets which allow these integrals to be performed analytically. 

It would also be interesting to average the expected costs over the training data, 
producing an expected generalisation cost for an algorithm. The Y(N) integral is 
straightforward, but the X(N) integral is difficult. However, similar integrals have 
been carried out in the thermodynamic limit (high input dimension) (Sollich, 1994), 
so the investigation of these techniques in the current setting is another promising 
research direction. 
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