
Predicting Lifetimes in Dynamically 
Allocated Memory 

David A. Cohn 
Adaptive Systems Group 

Harlequin, Inc. 
Menlo Park, CA 94025 
cohn~harlequin.com 

Satinder Singh 
Department of Computer Science 

University of Colorado 
Boulder, CO 80309 

baveja~cs.colorado.edu 

Abstract 

Predictions oflifetimes of dynamically allocated objects can be used 
to improve time and space efficiency of dynamic memory manage­
ment in computer programs. Barrett and Zorn [1993] used a simple 
lifetime predictor and demonstrated this improvement on a variety 
of computer programs. In this paper, we use decision trees to do 
lifetime prediction on the same programs and show significantly 
better prediction . Our method also has the advantage that during 
training we can use a large number of features and let the decision 
tree automatically choose the relevant subset . 

1 INTELLIGENT MEMORY ALLOCATION 

Dynamic memory allocation is used in many computer applications. The appli­
cation requests blocks of memory from the operating system or from a memory 
manager when needed and explicitly frees them up after use. Typically, all of these 
requests are handled in the same way, without any regard for how or for how long 
the requested block will be used . Sometimes programmers use runtime profiles to 
analyze the typical behavior of their program and write special purpose memory 
management routines specifically tuned to dominant classes of allocation events . 
Machine learning methods offer the opportunity to automate the process of tuning 
memory management systems. 

In a recent study, Barrett and Zorn [1993] used two allocators: a special allocator 
for objects that are short-lived, and a default allocator for everything else. They 
tried a simple prediction method on a number of public-domain , allocation-intensive 
programs and got mixed results on the lifetime prediction problem. Nevertheless, 
they showed that for all the cases where they were able to predict well, their strategy 
of assigning objects predicted to be short-lived to the special allocator led to savings 



940 D. A. Cohn and S. Singh 

in program running times. Their results imply that if we could predict well in all 
cases we could get similar savings for all programs. We concentrate on the lifetime 
prediction task in this paper and show that using axis-parallel decision trees does 
indeed lead to significantly better prediction on all the programs studied by Zorn and 
Grunwald and some others that we included. Another advantage of our approach 
is that we can use a large number of features about the allocation requests and let 
the decision tree decide on their relevance. 

There are a number of advantages of using lifetime predictions for intelligent mem­
ory management. It can improve CPU usage, by using special-purpose allocators, 
e.g., short-lived objects can be allocated in small spaces by incrementing a pointer 
and deallocated together when they are all dead. It can decrease memory fragmen­
tation, because the short-lived objects do not pollute the address space of long lived 
objects. Finally, it can improve program locality, and thus program speed, because 
the short-lived objects are all allocated in a small part of the heap. 

The advantages of prediction must be weighed against the time required to examine 
each request and make that prediction about its intended use. It is frequently 
argued that, as computers and memory become faster and cheaper, we need to 
be less concerned about the speed and efficiency of machine learning algorithms. 
When the purpose of the algorithm is to save space and computation, however, 
these concerns are paramount. 

1.1 RELATED WORK 

Traditionally, memory management has been relegated to a single, general-purpose 
allocator. When performance is critical, software developers will frequently build a 
custom memory manager which they believe is tuned to optimize the performance 
of the program. Not only is this hand construction inefficient in terms of the pro­
gramming time required, this "optimization" may seriously degrade the program's 
performance if it does not accurately reflect the program's use [Wilson et al., 1995]. 

Customalloc [Grunwald and Zorn, 1992] monitors program runs on benchmark in­
puts to determine the most commonly requested block sizes. It then produces a 
set of memory allocation routines which are customized to efficiently allocate those 
block sizes. Other memory requests are still handled by a general purpose allocator. 

Barrett and Zorn [1993] studied lifetime prediction based on benchmark inputs. At 
each allocation request, the call graph (the list of nested procedure/function calls in 
effect at the time) and the object size was used to identify an allocation site. If all 
allocations from a particular site were short-lived on the benchmark inputs, their 
algorithm predicted that future allocations would also be short-lived. Their method 
produced mixed results at lifetime prediction, but demonstrated the savings that 
such predictions could bring. 

In this paper, we discuss an approach to lifetime prediction which uses learned 
decision trees . In the next section, we first discuss the identification of relevant 
state features by a decision tree. Section 3 discusses in greater detail the problem 
of lifetime prediction. Section 4 describes the empirical results of applying this 
approach to several benchmark programs, and Section 5 discusses the implications 
of these results and directions for future work. 



Predicting Lifetimes in Dynamically Allocated Memory 941 

2 FEATURE SELECTION WITH A DECISION TREE 

Barrett and Zorn 's approach captures state information in the form of the program's 
call graph at the time of an allocation request, which is recorded to a fixed pre­
determined depth. This graph, plus the request size, specifies an allocation "site"; 
statistics are gathered separately for each site . A drawback of this approach is that 
it forces a division for each distinct call graph, preventing generalization across ir­
relevant features. Computationally, it requires maintaining an explicit call graph 
(information that the program would not normally provide), as well as storing a 
potentially large table of call sites from which to make predictions. It also ignores 
other potentially useful information, such as the parameters of the functions on the 
call stack, and the contents of heap memory and the program registers at the time 
of the request. 

Ideally, we would like to examine as much of the program state as possible at the 
time of each allocation request, and automatically extract those pieces of informa­
tion that best allow predicting how the requested block will be used. Decision tree 
algorithms are useful for this sort of task . A decision tree divides inputs on basis 
of how each input feature improves "purity" of the tree's leaves. Inputs that are 
statistically irrelevant for prediction are not used in any splits; the tree's final set 
of decisions examine only input features that improve its predictive performance. 

Regardless of the parsimony of the final tree however, training a tree with the entire 
program state as a feature vector is computationally infeasible. In our experiments, 
detailed below, we arbitrarily used the top 20 words on the stack, along with the 
request size, as an approximate indicator of program state. On the target machine 
(a Sparcstation) , we found that including program registers in the feature set made 
no significant difference, and so dropped them from consideration for efficiency. 

3 LIFETIME PREDICTION 

The characteristic of memory requests that we would like to predict is the lifetime 
of the block - how long it will be before the requested memory is returned to the 
central pool. Accurate lifetime prediction lets one segregate memory into short­
term, long-term and permanent storage. To this end, we have used a decision tree 
learning algorithm to derive rules that distinguish "short-lived" and "permanent" 
allocations from the general pool of allocation requests. 

For short-lived blocks, one can create a very simple and efficient allocation scheme 
[Barrett and Zorn, 1993]. For "permanent" blocks, allocation is also simple and 
cheap, because the allocator does not need to compute and store any of the infor­
mation that would normally be required to keep track of the block and return it to 
the pool when freed . 

One complication is that of unequal loss for different types of incorrect predictions. 
An appropriately routed memory request may save dozens of instruction cycles, but 
an inappropriately routed one may cost hundreds. The cost in terms of memory 
may also be unequal: a short-lived block that is incorrectly predicted to be "per­
manent" will permanently tie up the space occupied by the block (if it is allocated 
via a method that can not be freed). A "permanent" block, however, that is in­
correctly predicted to be short-lived may pollute the allocator's short-term space 
by preventing a large segment of otherwise free memory from being reclaimed (see 
Barrett and Zorn for examples). 

These risks translate into a time-space tradeoff that depends on the properties of 



942 D. A. Cohn and S. Singh 

the specific allocators used and the space limitations of the target machine. For our 
experiments, we arbitrarily defined false positives and false negatives to have equal 
loss, except where noted otherwise. Other cases may be handled by reweighting 
the splitting criterion, or by rebalancing the training inputs (as described in the 
following section). 

4 EXPERIMENTS 

We conducted two types of experiments. The first measured the ability of learned 
decision trees to predict allocation lifetimes. The second incorporated these learned 
trees into the target applications and measured the change in runtime performance. 

4.1 PREDICTIVE ACCURACY 

We used the OC1 decision tree software (designed by Murthy et al. [1994]) and 
considered only axis-parallel splits, in effect, conditioning each decision on a single 
stack feature. We chose the sum minority criterion for splits, which minimizes the 
number of training examples misclassified after the split. For tree pruning, we used 
the cost complexity heuristic, which holds back a fraction (in our case 10%) of 
the data set for testing, and selects the smallest pruning of the original tree that is 
within one standard error squared ofthe best tree [Breiman et al. 1984]. The details 
of these and other criteria may be found in Murthy et al. [1994] and Breiman et al. 
[1984]. In addition to the automatically-pruned trees, we also examined trees that 
had been truncated to four leaves, in effect examining no more than two features 
before making a decision. 

OC1 includes no provisions for explicitly specifying a loss function for false positive 
and false negative classifications. It would be straightforward to incorporate this 
into the sum minority splitting criterion; we chose instead to incorporate the loss 
function into the training set itself, by duplicating training examples to match 
the target ratios (in our case, forcing an equal number of positive and negative 
examples). 

In our experiments, we used the set of benchmark applications reported on by 
Barrett and Zorn: Ghostseript, a PostScript interpreter, Espresso, a PLA logic 
optimizer, and Cfrae, a program for factoring large numbers, Gawk, an AWK pro­
gramming language interpreter and Perl, a report extraction language. We also 
examined Gee, a public-domain C compiler, based on our company's specific inter­
est in compiler technology. 

The experimental procedure was as follows: We linked the application program with 
a modified mal/oe routine which, in addition to allocating the requested memory, 
wrote to a trace file the size of the requested block, and the top 20 machine words 
on the program stack. Calls to free allowed tagging the existing allocations, which, 
following Barrett and Zorn, were labeled according to how many bytes had been 
allocated during their lifetime. 1 

It is worth noting that these experiments were run on a Sparcstation, which fre­
quently optimizes away the traditional stack frame. While it would have been 
possible to force the system to maintain a traditional stack, we wished to work 
from whatever information was available from the program "in the wild" , without 
overriding system optimizations. 

1 We have also examined, with comparable success, predicting lifetimes in terms of the 
number of intervening calls to malloc; which may be argued as an equally useful measure. 
We focus on number of bytes for the purposes of comparison with the existing literature. 



Predicting Lifetimes in Dynamically Allocated Memory 943 

Input files were taken from the public ftp archive made available by Zorn and 
Grunwald [1993]. Our procedure was to take traces of three of the files (typically 
the largest three for which we could store an entire program trace). Two of the 
traces were combined to form a training set for the decision tree , and the third was 
used to test the learned tree. 

Ghostseript training files: manual.ps and large.ps; test file : ud-doc.ps 
Espresso training files: cps and mlp4; test file: Z5xp1 
Cfrae training inputs: 41757646344123832613190542166099121 and 

327905606740421458831903; test input: 417576463441248601459380302877 

Gawk training file: adj.awk/words-small.awk; test file: adj.awk/words-Iarge.awk2 

Perl training files: endsort.perl (endsort .perl as input) , hosts.perl (hosts-data.perl 
as input) ; test file : adj.perl(words-small.awk as input) 

Gee training files : cse.c and combine.c; test file : expr.c 

4.1.1 SHORT-LIVED ALLOCATIONS 

First, we attempted to distinguish short-lived allocations from the general pool. 
For comparison with Barrett and Zorn [1993], we defined "short-lived" allocations 
as those that were freed before 32k subsequent bytes had been allocated. The 
experimental results of this section are summarized in Table 1. 

Barrett &c Zorn OC1 
application false pos % false neg % false pos % false neg % 
ghostscnpt ° 25.2 0.13 \0.72) 1.7 \13.5) 
espresso 0.006 72 0.38 (1.39) 6.58 (14.9) 
cfrac 3.65 52 .7 2.5 (0.49) 16.9 (19.4) 
gawk 0 -3 0.092 (0.092) 0.34 (0.34) 
perl 1.11 78.6 5.32 (10.8) 33.8 (34.3) 
gcc - - 0.85 (2.54) 31.1 (31.0) 

Table 1: Prediction errors for "short-lived" allocations, in percentages of misallo­
cated bytes. Values in parentheses are for trees that have been truncated to two 
levels . Barrett and Zorn's results included for comparison where available. 

4.1.2 "PERMANENT" ALLOCATIONS 

We then attempted to distinguish "permanent" allocations from the general pool 
(Barrett and Zorn only consider the short-lived allocations discussed in the previous 
section). "Permanent" allocations were those that were not freed until the program 
terminated. Note that there is some ambiguity in these definitions - a "permanent" 
block that is allocated near the end of the program's lifetime may also be "short­
lived". Table 2 summarizes the results of these experiments. 

We have not had the opportunity to examine the function of each of the "relevant 
features" in the program stacks; this is a subject for future work. 

2For Gawk, we varied the training to match that used by Barrett and Zorn . They used 
as training input a single gawk program file run with one data set , and tested on the same 
gawk program run with another. 

3We were unable to compute Barrett and Zorn's exact results here, although it appears 
that their false negative rate was less than 1%. 



944 D. A. Cohn and S. Singh 

application false pos % false neg % 
ghostscript 0 0.067 
espresso 0 1.27 
cfrac 0.019 3.3 
gcc 0.35 19.5 

Table 2: Prediction errors for "permanent" allocations (% misallocated bytes). 

4.2 RUNTIME PERFORMANCE 

The raw error rates we have presented above indicate that it is possible to make 
accurate predictions about the lifetime of allocation requests, but not whether those 
predictions are good enough to improve program performance. To address that 
question, we have incorporated predictive trees into three of the above applications 
and measured the effect on their runtimes. 

We used a hybrid implementation, replacing the single monolithic decision tree with 
a number of simpler, site-specific trees. A "site" in this case was a lexical instance 
of a call to malloc or its equivalent. When allocations from a site were exclusively 
short-lived or permanent, we could directly insert a call to one of the specialized 
allocators (in the manner of Barrett and Zorn). When allocations from a site were 
mixed, a site-specific tree was put in place to predict the allocation lifetime. 

Requests predicted to be short-lived were routed to a "quick malloc" routine similar 
to the one described by Barrett and Zorn; those predicted to be permanent were 
routed to another routine specialized for the purpose. On tests with random data 
these specialized routines were approximately four times faster than "malloc". 

Our experiments targeted three applications with varying degrees of predictive ac­
curacy: ghostscript, gcc, and cfrac. The results are encouraging (see Table 3). For 
ghostscript and gcc, which have the best predictive accuracies on the benchmark 
data (from Section 4.1), we had a clear improvement in performance. For cfrac, 
with much lower accuracy, we had mixed results: for shorter runs, the runtime per­
formance was improved, but on longer runs there were enough missed predictions 
to pollute the short-lived memory area and degrade performance. 

5 DISCUSSION 

The application of machine learning to computer software and operating systems 
is a largely untapped field with promises of great benefit. In this paper we have 
described one such application, producing efficient and accurate predictions of the 
lifetimes of memory allocations. 

Our data suggest that, even with a feature set as large as a runtime program stack, 
it is possible to characterize and predict the memory usage of a program after only 
a few benchmark runs. The exceptions appear to be programs like Perl and gawk 
which take both a script and a data file. Their memory usage depends not only 
upon characterizing typical scripts, but the typical data sets those scripts act upon.4 

Our ongoing research in memory management is pursuing a number of other con-

4Perl's generalization performance is significantly better when tested on the same script 
with different data. We have reported the results using different scripts for comparison 
with Barrett and Zorn. 



Predicting Lifetimes in Dynamically Allocated Memory 945 

application benchmark test error run tIme 
{training set) short I long I permanent normal I predictive 
ghostscript , trained on ud-doc.ps; 7 sites, 1 tree 
manual.ps 16/256432 0/3431 0/0 96.29 95.43 
large.ps 17.22 16.75 
thesis .ps 40.27 37.57 
gcc, trained on combine, cse, c-decl; 17 sites , 4 trees 
expr.c 0/11988 2786/11998 301/536875 12.59 12.40 
loop.c 5.16 5.16 
reload1.c 7.02 6.81 
cfrac, trained on 100 · . ·057; 8 sItes, 4 trees 
327 .. ·903 24/7970099 13172/22332 106/271 7.75 7.23 
417· · ·771 67.93 74.57 
417 .. · 121 225.31 245 .64 

Table 3: Running times in seconds for applications with site-specific trees. Times 
shown are averages over 24-40 runs , and with the exception of loop.c , are statistically 
significant with probability greater than 99%. 

tinuations of the results described here , including lifetime clustering and intelligent 
garbage collection. 

REFERENCES 

D. Barrett and B. Zorn (1993) Using lifetime predictors to improve memory 
allocation performance. SIGPLAN'93 - Conference on Programming Language 
Design and Implementation, June 1993, Albuquerque, New Mexico, pp. 187-196. 

L. Breiman, J. Friedman, R. Olshen and C. Stone (1984) Classification and 
Regression Trees, Wadsworth International Group , Belmont , CA. 

D. Grunwald and B. Zorn (1992) CUSTOMALLOC: Efficient synthesized mem­
ory allocators. Technical Report CU-CS-602-92, Dept. of Computer Science, Uni­
versity of Colorado. 

S. Murthy, S. Kasif and S. Salzberg (1994) A system for induction of oblique 
decision trees . Journal of Artificial Intelligence Research 2:1-32. 

P. Wilson, M. Johnstone, M. Neely and D. Boles (1995) Dynamic storage 
allocation : a survey and critical review . Proc. 1995 Intn'l Workshop on Memory 
Management , Kinross, Scotland, Sept. 27-29, Springer Verlag. 

B. Zorn and D. Grunwald (1993) A set of benchmark inputs made publicly 
available , in ftp archive ftp. cs. colorado . edu: /pub/misc/malloc-benchmarks/. 


