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Abstract 

This paper describes a new framework for relational graph match­
ing. The starting point is a recently reported Bayesian consistency 
measure which gauges structural differences using Hamming dis­
tance. The main contributions of the work are threefold. Firstly, 
we demonstrate how the discrete components of the cost func­
tion can be softened. The second contribution is to show how 
the softened cost function can be used to locate matches using 
continuous non-linear optimisation. Finally, we show how the res­
ulting graph matching algorithm relates to the standard quadratic 
assignment problem. 

1 Introduction 
Graph matching [6, 5, 7, 2, 3, 12, 11J is a topic of central importance in pattern 
perception. The main computational issues are how to compare inexact relational 
descriptions (7J and how to search efficiently for the best match [8J. These two issues 
have recently stimulated interest in the connectionist literature (9, 6, 5, lOJ. For 
instance, Simic [9], Suganathan et al. (101 and Gold et ai. [6, 51 have addressed the 
issue of how to expressively measure relational distance. Both Gold and Rangarajan 
(61 and Suganathan et al [101 have shown how non-linear optimisation techniques 
such as mean-field annealing [lOJ and graduated assignment [61 can be applied to 
find optimal matches. 

In a recent series of papers we have developed a Bayesian framework for relational 
graph matching [2, 3, 11, 121. The novelty resides in the fact that relational con­
sistency is gauged by a probability distribution that uses Hamming distance to 
measure structural differences between the graphs under match. This new frame­
work has not only been used to match complex infra-red (3J and radar imagery 
[11], it has also been used to successfully control a graph-edit process (12J of the 
sort originally proposed by Sanfeliu and Fu (71. The optimisation of this relational 
consistency measure has hitherto been confined to the use of discrete update pro­
cedures [11, 2, 3]. Examples include discrete relaxation [7, 11], simulated annealing 
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[4, 3] and genetic search [2]. Our aim in this paper is to consider how the optim­
isation of the relational consistency measure can be realised by continuous means 
[6, 10]. Specifically we consider how the matching process can be effected using a 
non-linear technique similar to mean-field annealing [IOJ or graduated assignment 
[6]. In order to achieve this goal we must transform our discrete cost function [11] 
into a form suitable for optimisation by continuous techniques. The key idea is 
to exploit the apparatus of statistical physics [13] to compute the effective Gibbs 
potentials for our discrete relaxation process. The potentials are in-fact weighted 
sums of Hamming distance enumerated over the consistent relations of the model 
graph. The quantities of interest in the optimisation process are the derivatives 
of the global energy function computed from the Gibbs potentials. In the case of 
our weighted sum of Hamming distance, these derivatives take on a particularly 
interesting form which provides an intuitive insight into the dynamics of the update 
process. An experimental evaluation of the technique reveals not only that it is 
successful in matching noise corrupted graphs, but that it significantly outperforms 
the optimisation of the standard quadratic energy function. 

2 Relational Consistency 
Our overall goal in this paper is to formulate a non-linear optimisation technique 
for matching relational graphs. We use the notation G = (V, E) to denote the 
graphs under match, where V is the set of nodes and E is the set of edges. Our 
aim in matching is to associate nodes in a graph G D = (V D , ED) representing data 
to be matched against those in a graph G M = (V M , EM) representing an available 
relational model. Formally, the matching is represented by a function f : VD -T VM 

from the nodes in the data graph G D to those in the model graph G M. We represent 
the structure of the two graphs using a pair of connection matrices. The connection 
matrix for the data graph consists of the binary array 

{ 1 if (a, b) E ED 
Dab = 0 otherwise 

while that for the model graph is 

{ 1 if (a , (3) E EM 
MOl{3 = 0 otherwise 

(1) 

(2) 

The current state of match between the two graphs is represented by the function 
f : V D -T V M· In others words the statement f (a) = a means that the node a E V D 

is matched to the node a E V M. The binary representation of the current state 
of match is captured by a set of assignment variables which convey the following 
meaning 

_ {1 if f{a) = a 
Saa - o otherwise 

(3) 

The basic goal of the matching process is to optimise a consistency-measure which 
gauges the structural similarity of the matched data graph and the model graph. 
In a recent series of papers, Wilson and Hancock [11, 12] have shown how consist­
ency of match can be modelled using a Bayesian framework. The basic idea is to 
construct a probability distribution which models the effect of memoryless match­
ing errors in generating departures from consistency between the data and model 
graphs. Suppose that Sa = aU {(3I(a, (3) E EM} represents the set of nodes that 
form the immediate contextual neighbourhood of the node a in the model graph. 
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Further suppose that ra = f(a) U {f(b)l(a,b) E ED} represents the set of matches 
assigned to the contextual neighbourhood of the node a E VD of the data graph. 
Basic to Wilson and Hancock's modelling of relational consistency is to regard the 
complete set of model-graph relations as mutually exclusive causes from which the 
potentially corrupt matched model-graph relations arise. As a result, the probabil­
ity of the matched configuration r a can be expressed as a mixture distribution over 
the corresponding space of model-graph configurations 

p(ra) = L p(raISa)P(Sa) (4) 
aEVM 

The modelling of the match confusion probabilities p(r alSa) draws on the assump­
tion that the error process is independent of location. This allows p(raISa) to be 
factorised over its component matches. Individual label errors are further assumed 
to act with a memoryless probability Pe . With these ingredients the probability of 
the matched neighbourhood r a reduces to [11, 12] 

p(ra) = I~~I 2: exp[-ItH(a,a)] 
aEVM 

(5) 

where Ka = (1- Pe)lfal and the exponential constant is related to the probability 
of label errors, i.e. It = In (l-;,~e ). Consistency of match is gauged by the "Hamming 
distance", H(a, a) between the matched relation r a and the set of consistent neigh­
bourhood structures Sa, 'Va E VM from the model graph. According to our binary 
representation of the matching process, the distance measure is computed using the 
connectivity matrices and the assignment variables in the following manner 

H(a, a) = 2: 2: Ma{3Dab(l - Sb{3) (6) 
bEVD {3EVM 

The probability distribution p(r a) may be regarded as providing a natural way of 
modelling departures from consistency at the neighbourhood level. Matching con­
sistency is graded by Hamming distance and controlled hardening may be induced 
by reducing the label-error probability Pe towards zero. 

3 The Effective Potential for Discrete Relaxation 
We commence the development of our graduated assignment approach to discrete 
relaxation by computing an effective Gibbs potential U(r a) for the matching config­
uration r a. In other words, we aim to replace the compound exponential probability 
distribution appearing in equation (5) by the single Gibbs distribution 

(7) 

Our route to the effective potential is provided by statistical physics. If we represent 
p(r a) by an equivalent Gibbs distribution with an identical partition function, then 
the equilibrium configurational potential is related to the partial derivative of the 
log-probability with respect to the coupling constant It in the following manner [13] 
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u(r a) = _ 8ln p(r a) 
8J.t 

Upon substituting for p(r a) from equation (5) 

2: H(a, a) exp[ -J.tH(a, a)] 
u(ra) = _a_E~VM~ ________________ __ 

2: exp[-J.tH(a,a)] 
aEVM 
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(8) 

(9) 

In other words the neighbourhood Gibbs potentials are simply weighted sums of 
Hamming distance between the data and model graphs. In fact the local clique 
potentials display an interesting barrier property. The potential is concentrated at 
Hamming distance H ~ ~. Both very large and very small Hamming distances 
contribute insignificantly to the energy function, i.e. limH-to H exp[-J.tH] = 0 and 
limH-too H exp[-J.tH] = o. 
With the neighbourhood matching potentials to hand, we construct a global 
"matching-energy" [; = 2:aEVD U(r a) by summing the contributions over the nodes 
of the data graph. 

4 Optimising the Global Cost Function 
We are now in a position to develop a continuous update algorithm by softening the 
discrete ingredients of our graph matching potential. The idea is to compute the 
derivatives of the global energy given in equation (10) and to effect the softening 
process using the soft-max idea of Bridle [1]. 

4.1 Softassign 

The energy function represented by equations (9) and (10) is defined over the dis­
crete matching variables Saa. The basic idea underpinning this paper is to realise a 
continuous process for updating the assignment variables. The optimal step-size is 
determined by computing the partial derivatives of the global matching energy with 
respect to the assignment variables. We commence by computing the derivatives of 
the contributing neighbourhood Gibbs potentials, i.e. 

where 
~aa = exp(-J.tH(a, a)] 

2:aIEVM exp[-J.tH(a, a l )] 

(11) 

To further develop this result, we must compute the derivatives of the Hamming 
distances. From equation (6) it follows that 

8H(a,a) _ M D 
8 - - a{3 ab 

Sb{3 
(12) 

It is now a straightforward matter to show that the derivative of the global matching 
energy is equal to 
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We would like our continuous matching vanables to remain constrained to lie within 
the range [0, 1]. Rather than using a linear update rule, we exploit Bridle's soft-max 
ansatz [1). In doing this we arrive at an update process which has many features in 
common with the well-known mean-field equations of statistical physics 

exp[-~~] 
T OSaa 

Sao. +- -----'::.........,[;:---:--0-3-:"""""""""] L exp -~_£ 
T OSaa' 

a'EVM 

(14) 

The mathematical structure of this update process is important and deserves further 
comment. The quantity eaa defined in equation (11) naturally plays the role of a 
matching probability. The first term appearing under the square bracket in equation 
(13) can therefore be thought of as analogous to the optimal update direction for 
the standard quadratic cost function [10,6); we will discus this relationship in more 
detail in Section 4.2. The second term modifies this principal update direction 
by taking into account the weighted fluctuations in the Hamming distance about 
the effective potential or average Hamming distance. If the average fluctuation 
is zero, then there is no net modification to the update direction. When the net 
fluctuation is non-zero, the direction of update is modified so as to compensate for 
the movement of the mean-value of the effective potential. This corrective tracking 
process provides an explicit mechanism for maintaining contact with the minimum 
of the effective potential under rescaling effects induced by changes in the value of 
the coupling constant p. Moreover, since the fluctuation term is itself proportional 
to p, this has an insignificant effect for Pe ~ ~ but dominates the update process 
when Pe -+ 0. 

4.2 Quadratic Assignment Problem 

Before we proceed to experiment with the new graph matching process, it is inter­
esting to briefly review the standard quadratic formulation of the matching problem 
investigated by Simic (9], Suganathan et al (to] and Gold and Rangarajan (6]. The 
common feature of these algorithms is to commence from the quadratic cost function 

(15) 

In this case the derivative of the global cost function is linear in the assignment 
variables, i.e. 

(16) 

This step size is equivalent to that appearing in equation (14) provided that p = 0, 
i.e. Pe -+ !. The update is realised by applying the soft-max ansatz of equation 
(14) . In the next section, we will provide some experimental comparison with the 
resulting matching process. However, it is important to stress that the update pro­
cess adopted here is very simplistic and leaves considerable scope for further refine­
ment. For instance, Gold and Rangarajan (6] have exploited the doubly stochastic 
properties of Sinckhorn matrices to ensure two-way symmetry in the matching pro­
cess. 
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5 Experiments and Conclusions 

Our main aim in this Section is to compare the non-linear update equations with 
the optimisation of the quadratic matching criterion described in Section 4.2. The 
data for our study is provided by synthetic Delaunay graphs. These graphs are 
constructed by generating random dot patterns. Each random dot is used to seed 
a Voronoi cell. The Delaunay triangulation is the region adjacency graph for the 
Voronoi cells. In order to pose demanding tests of our matching technique, we have 
added controlled amounts of corruption to the synthetic graphs. This is effected by 
deleting and adding a specified fraction of the dots from the initial random patterns. 
The associated Delaunay graph is therefore subject to structural corruption. We 
measure the degree of corruption by the fraction of surviving nodes in the corrupted 
Delaunay graph. 

Our experimental protocol has been as follows . For a series of different corruption 
levels, we have generated a sample of 100 random graphs. The graphs contain 50 
nodes each. According to the specified corruption level , we have both added and 
deleted a predefined fraction of nodes at random locations in the initial graphs so 
as to maintain their overall size. For each graph we measure the quality of match 
by computing the fraction of the surviving nodes for which the assignment variables 
indicate the correct match. The value of the temperature T in the update process 
has been controlled using a logarithmic annealing schedule of the form suggested 
by Geman and Geman (41 . We initialise the assignment variables uniformly across 
the set of matches by setting Saa = JM , "ta, 0:. 

We have compared the results obtained with two different versions of the matching 
algorithm. The first of these involves updating the softened assignment variables 
by applying the non-linear update equation given in (14). The second matching 
algorithm involves applying the same optimisation apparatus to the quadratic cost 
function defined in equation (15) in a simplified form of the quadratic assignment 
algorithm [6, 101 . 

Figure 1 shows the final fraction of correct matches for both algorithms. The data 
curves show the correct matching fraction averaged over the graph samples as a 
function of the corruption fraction. The main conclusions that can be drawn from 
these plots is that the new matching technique described in this paper significantly 
outperforms its conventional quadratic counterpart described in Section 4.2. The 
main difference between the two techniques resides in the fact that our new method 
relies on updating with derivatives of the energy function that are non-linear in the 
assignment variables. 

To conclude, our main contribution in this paper has been to demonstrate how 
the discrete Bayesian relational consistency measure of Wilson and Hancock (111 
can be cast in a form that is amenable to continuous non-linear optimisation. We 
have shown how the method relates to the standard quadratic assignment algorithm 
extensively studied in the connectionist literature [6, 9, 101. Moreover, an exper­
imental analysis reveals that the method offers superior performance in terms of 
noise control. 
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Figure 1: Experimental comparison: softened discrete relaxation (dotted curve); 
matching using the quadratic cost function (solid curve). 
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