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Abstract 
The Neurothermostat is an adaptive controller that regulates in­
door air temperature in a residence by switching a furnace on or 
off. The task is framed as an optimal control problem in which 
both comfort and energy costs are considered as part of the con­
trol objective. Because the consequences of control decisions are 
delayed in time, the N eurothermostat must anticipate heating de­
mands with predictive models of occupancy patterns and the ther­
mal response of the house and furnace. Occupancy pattern predic­
tion is achieved by a hybrid neural net / look-up table. The Neu­
rothermostat searches, at each discrete time step, for a decision 
sequence that minimizes the expected cost over a fixed planning 
horizon. The first decision in this sequence is taken, and this pro­
cess repeats. Simulations of the Neurothermostat were conducted 
using artificial occupancy data in which regularity was systemat­
ically varied, as well as occupancy data from an actual residence. 
The Neurothermostat is compared against three conventional poli­
cies, and achieves reliably lower costs. This result is robust to the 
relative weighting of comfort and energy costs and the degree of 
variability in the occupancy patterns. 

For over a quarter century, the home automation industry has promised to revolu­
tionize our lifestyle with the so-called Smart House@ in which appliances, lighting, 
stereo, video, and security systems are integrated under computer control. How­
ever, home automation has yet to make significant inroads, at least in part because 
software must be tailored to the home occupants. 

Instead of expecting the occupants to program their homes or to hire someone to 
do so, one would ideally like the home to essentially program itself by observing 
the lifestyle of the occupants. This is the goal of the Neural Network House (Mozer 
et al., 1995), an actual residence that has been outfitted with over 75 sensors­
including temperature, light, sound, motion-and actua.tors to control air heating, 
water heating, lighting, and ventilation. In this paper, we describe one research 
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project within the house, the Neurothermostat, that learns to regulate the indoor 
air temperature automatically by observing and detecting patterns in the occupants' 
schedules and comfort preferences. We focus on the problem of air heating with 
a whole-house furnace, but the same approach can be taken with alternative or 
multiple heating devices, and to the problems of cooling and ventilation. 

1 TEMPERATURE REGULATION AS AN OPTIMAL 
CONTROL PROBLEM 

Traditionally, the control objective of air temperature regulation has been to mini­
mize energy consumption while maintaining temperature within an acceptable com­
fort margin during certain times of the day and days of the week. This is sensible 
in commercial settings, where occupancy patterns follow simple rules and where 
energy considerations dominate individual preferences. In a residence, however, the 
desires and schedules of occupants need to be weighted equally with energy con­
siderations. Consequently, we frame the task of air temperature regulation as a 
problem of maximizing occupant comfort and minimizing energy costs. 

These two objectives clearly conflict, but they can be integrated into a unified 
framework via an optimal control aproach in which the goal is to heat the house 
according to a policy that minimizes the cost 

J = lim 1 l:!~~"+ 1 [e( ut) + m( xt}], 
"-+00 " 0 

where time, t, is quantized into nonoverlapping intervals during which we assume 
all environmental variables remain constant, to is the interval ending at the current 
time, Ut is the control decision for interval t (e.g., turn the furnace on), e(u) is the 
energy cost associated with decision u, Xt is the environmental state during interval 
t, which includes the indoor temperature and the occupancy status of the home, 
and m(x) is the misery of the occupant given state x. To add misery and energy 
costs, a common currency is required. Energy costs are readily expressed in dollars. 
We also determi'ne misery in dollars, as we describe later. 

While we have been unable to locate any earlier work that combined energy and 
comfort costs in an optimal control framework, optimal control has been used in a 
variety of building energy system control applications (e.g., Henze & Dodier, 1996; 
Khalid & Omatu, 1995), 

2 THE NEUROTHERMOSTAT 

Figure 1 shows the system architecture of the Neurothermostat and its interaction 
with the environment. The heart of the Neurothermostat is a controller that, at 
time intervals of 6 minutes, can switch the house furnace on or off. Because the con­
sequences of control decisions are delayed in time, the controller must be predictive 
to anticipate heating demands. The three boxes in the Figure depict components 
that predict or model various aspects of the environment. We explain their purpose 
via a formal description of the controller operation. 

The controller considers sequences of '" decisions, denoted u, and searches for the 
sequence that minimizes the expected total cost, i u , over the planning horizon of 
",6 minutes: 

where the expectation is computed over future states of the environment conditional 
on the decision sequence u. The energy cost in an interval depends only on the 
control decision during that interval. The misery cost depends on two components 
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Figure 1: The Neurothermostat and its interaction with the environment 

of the state-the house occupancy status, o(t) (0 for empty, 1 for occupied), and 
the indoor air temperature, hu(t): 

mu(o(t), hu(t» = p[o(t) = 1] m(l, hu(t» + p[o(t) = 0] m(O, hu(t» 

Because the true quantities e, hu, m, and p are unknown, they must be estimated . 
The house thermal model of Figure 1 provides e and hu, the occupant comfort cost 
model provides m, and the home occupancy predictor provides p. 
We follow a tradition of using neural networks for prediction in the context of build­
ing energy system control (e.g., Curtiss, Kreider, & Brandemuehl, 1993; Ferrano & 
Wong, 1990; Miller & Seem, 1991), although in our initial experiments we require 
a network only for the occupancy prediction. 

2.1 PREDICTIVE OPTIMAL CONTROLLER 

We propose a closed-loop controller that combines prediction with fixed-horizon 
planning, of the sort proposed by Clarke, Mohtadi, and 'lUffs (1987). At each 
time step, the controller considers all possible decision sequences over the pl~nning 
horizon and selects the sequence that minimizes the expected total cost, J. The 
first decision in this sequence is then performed. After b minutes, the planning and 
execution process is repeated. This approach assumes that beyond the planning 
horizon, all costs are independent of the first decision in the sequence. 

While dynamic programming is an efficient search algorithm, it requires a discrete 
state space. Wishing to avoid quantizing the continuous variable of indoor temper­
ature, and the errors that might be introduced, we performed performed exhaustive 
search through the possible decision sequences, which was tractable due to rela­
tively short horizons and two additional domain constraints. First, because the 
house occupancy status can reasonably be assumed to be independent of the in­
door temperature, p need not be recalculated for every possible decision sequence. 
Second, the current occupancy status depends on the recent occupancy history. 
Consequently, one needs to predict occupancy patterns over the planning horizon, 
o E {O, l}'" to compute p. However, because most occupancy sequences are highly 
improbable, we find that considering only the most likely sequences-those contain­
ing at most two occupancy state transitions-produces the same decisions as doing 
the search over the entire distribution, reducing the cost from 0(2"') to O(K;2). 

2.2 OCCUPANCY PREDICTOR 

The basic task of the occupancy predictor is to estimate the probability that the 
occupant will be home b minutes in the future. The occupancy predictor can be 
run iteratively to estimate the probability of an occupancy pattern. 

If occupants follow a deterministic daily schedule, a look up table indexed by time 
of day and current occupancy state should capture occupancy patterns. We thus 
use a look up table to encode whatever structure possible, and a neural network 
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to encode residual structure. The look up table divides time into fixed 6 minute 
bins. The neural network consisted of the following inputs: current time of day; day 
of the week; average proportion of time home was occupied in the 10, 20, and 30 
minutes from the present time of day on the previous three days and on the same 
day of the week during the past four weeks; and the proportion of time the home 
was occupied during the past 60, 180, and 360 minutes . The network, a standard 
three-layer architecture, was trained by back propagation. The number of hidden 
units was chosen by cross validation . 

2.3 THERMAL MODEL OF HOUSE AND FURNACE 

A thermal model of the house and furnace predicts future indoor temperature(s) 
as a function of the outdoor temperature and the furnace operation. While one 
could perform system identification using neural networks, a simple parameterized 
resistance-capacitance (RC) model provides a reasonable first-order approximation. 
The RC model assumes that : the inside of the house is at a uniform temperature, 
and likewise the outside; a homogeneous flat wall separates the inside and outside, 
and this wall has a thermal resistance R and thermal capacitance C; the entire 
wall mass is at the inside temperature; and the heat input to the inside is Q when 
the furnace is running or zero otherwise. Assuming that the outdoor temperature, 
denoted g, is constant, the the indoor temperature at time t, hu(t), is : 

hu(t) = hu(t - 1) exp( -606 / RC) + (RQu(t) + 9 )(1 - exp( -606 / RC)), 

where hu(to) is the actual indoor temperature at the current time. Rand C were 
determined by architectural properties of the Neural Network House to be 1.33 
Kelvins/kilowatt and 16 megajoules/Kelvin, respectively. The House furnace is 
rated at 133,000 Btu/hour and has 92.5% fuel use efficiency, resulting in an output 
of Q = 36.1 kilowatts. With natural gas at $.485 per CCF, the cost of operating 
the furnace , e, is $.7135 per hour. 

2.4 OCCUPANT COMFORT COST MODEL 

In the Neural Network House, the occupant expresses discomfort by adjusting a 
set point temperature on a control panel. However, for simplicity, we assume in 
this work the setpoint is a constant, A. When the home is occupied, the misery 
cost is a monotonic function of the deviation of the actual indoor temperature from 
the set point . When the home is empty, the misery cost is zero regardless of the 
temperature. 

There is a rich literature directed at measuring thermal comfort in a given environ­
ment (i .e., dry-bulb temperature, relative humidity, air velocity, c~othing insulation, 
etc.) for the average building occupant (e .g., Fanger, 1972; Gagge, Stolwijk, & Nishi, 
1971). Although the measurements indicate the fraction of the population which 
is uncomfortable in a particular environment, one might also interpret them as a 
measure of an individual's level of discomfort. As a function of dry-bulb tempera­
ture, this curve is roughly parabolic. We approximate it with a measure of misery 
in a 6-minute period as follows: 

A ( h) _ _6_ max(0,1.x-hl-£)2 
m 0, - oa 24 x 60 25 . 

The first term, 0, is a binary variable indicating the home occupancy state. The 
second term is a conversion factor from arbitrary "misery" units to dollars. The 
third term scales the misery cost from a full day to the basic update interval. 
The fourth term produces the parabolic relative misery function, scaled so that a 
temperature difference of 5° C produces one unit of misery, with a deadband region 
from A - ( to A + L 

We have chosen the conversion factor a using an economic perspective. Consider 
the lost productivity that results from trying to work in a home that is 5° C colder 
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than desired for a 24 hour period. Denote this loss p, measured in hours. The cost 
in dollars of this loss is then a = 'YP, where'Y is the individual's hourly salary. With 
this approch, a can be set in a natural, intuitive manner. 

3 SIMULATION METHODOLOGY 
In all experiments we report below, fJ = 10 minutes, K, = 12 steps (120 minute plan­
ning horizon), ,\ = 22.5° C, f = 1, and 'Y = 28 dollars per hour. The productivity 
loss, p, was varied from 1 to 3 hours. 

We report here results from the Neurothermostat operating in a simulated envi­
ronment, rather than in the actual Neural Network House. The simulated environ­
ment incorporates the house/furnace thermal model described earlier and occupants 
whose preferences follow the comfort cost model. The outdoor temperature is as­
sumed to remain a constant 0° C. Thus, the Neurothermostat has an accurate model 
of its environment, except for the occupancy patterns, which it must predict based 
on training data. This allows us to evaluate the performance of the Neurothermo­
stat and the occupancy model as occupancy patterns are varied, uncontaminated 
by the effect of inaccuracy in the other internal models. 

We have evaluated the Neurothermostat with both real and artificial occupancy 
data. The real data was collected from the Neural Network House with a single 
resident over an eight month period, using a simple algorithm based on motion 
detector output and the opening and closing of outside doors. The artificial data 
was generated by a simulation of a single occupant. The occupant would go to work 
each day, later on the weekends, would sometimes come home for lunch, sometimes 
go out on weekend nights, and sometimes go out of town for several days. To 
examine performance of the Neurothermostat as a function of the variability in 
the occupant's schedule, the simulation model included a parameter, the variability 
index. An index of 0 means that the schedule is entirely deterministic; an index of 
1 means that the schedule was very noisy, but still contained statistical regularities. 
The index determined factors such as the likelihood and duration of out-of-town 
trips and the variability in departure and return times. 

3.1 ALTERNATIVE HEATING POLICIES 

In addition to the Neurothermostat, we examined three nonadaptive control policies. 
These policies produce a setpoint at each time step, and the furnace is switched on 
if the temperature drops below the setpoint and off if the temperature rises above 
the setpoint. (We need not be concerned about damage to the furnace by cycling 
because control decisions are made ten minutes apart.) The constant-temperature 
policy produces a fixed setpoint of 22.5° C. The occupancy-triggered policy produces 
a set point of 18° C when the house is empty, 22.5° C when the house is occupied. 
The setback-thermostat policy lowers the setpoint from 22.5° C to 18° C half an 
hour before the mean work departure time for that day of the week, and raises it 
back to 22.5° C half an hour before the mean work return time for that day of the 
week. The setback temperature for the occupancy-triggered and setback-thermostat 
policies was determined empirically to minimize the total cost. 

4 RESULTS 
4.1 OCCUPANCY PREDICTOR 

Performance of three different predictors was evaluated using artificial data across 
a range of values for the variability index. For each condition, we generated eight 
training/test sets of artificial data, each training and test set consisting of 150 days 
of data. Table 1 shows the normalized mean squared error (MSE) on the test set, 
averaged over the eight replications. The normalization involved dividing the MSE 
for each replication by the error obtained by predicting the future occupancy state 
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Table 1: Normalized MSE on Test Set for Occupancy Prediction-Artificial Data 
variability index 

0 .25 .50 .75 1 
lookup table .49 .81 .94 .92 .94 
neural net .02 .63 .83 .86 .91 

lookup table + neural net .02 .60 .78 .77 .74 
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Figure 2: Mean cost per day incurred by four control policies on (artificial) test data as 
a function of the data's variability index for p = 1 (comfort lightly weighted, left panel) 
and p = 3 (comfort heavily weighted, right panel). 

is the same as the present state. The main result here is that the combination of 
neural network and look up table perform better than either component in isolation 
(ANOVA: F(l, 7) = 1121,p < .001 for combination vs. table; F(l, 7) = 64,p < .001 
for combination vs. network), indicating that the two components are capturing 
different structure in the data. 

4.2 CONTROLLER WITH ARTIFICIAL OCCUPANCY DATA 

Having trained eight occupancy predictors with different (artificial data) training 
sets, we computed misery and energy costs for the Neurothermostat on the cor­
responding test sets. Figure 2 shows the mean total cost per day as a function 
of variability index, control policy, and relative comfort cost . The robust result is 
that the Neurothermostat outperforms the three nonadaptive control policies for all 
levels of the variability index and for both a wide range of values of p. 

Other patterns in the data are noteworthy. Costs for the Neurothermostat tend to 
rise with the variability index, as one would expect because the occupant's sched­
ule becomes less predictable. The constant-temperature policy is worst if occupant 
comfort is weighted lightly, and begins to approach the Neurothermostat in per­
formance as comfort costs are increased. If comfort costs overwhelm energy costs, 
then the constant-temperature policy and the Neurothermostat converge. 

4.3 CONTROLLER WITH REAL OCCUPANCY DATA 

Eight months of real occupancy data collected in the Neural Network House be­
ginning in September 1994 was also used to generate occupancy models and test 
controllers. Three training/test splits were formed by training on five consecu­
tive months and testing on the next month. Table 2 shows the mean daily cost 
for the four controllers. The Neurothermostat significantly outperforms the three 
nonadaptive controllers, as it did with the artificial data. 

5 DISCUSSION 
The simulation studies reported here strongly suggest that adaptive control of res­
idential heating and cooling systems is worthy of further investigation. One is 
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Table 2: Mean Daily Cost Based on Real Occupancy Data 
productivity loss 
p=1 p=3 

Neurothermostat $6.77 $7.05 
constant temperature $7.85 $7.85 
occupancy triggered $7.49 $8.66 
setback thermostat $8.12 $9.74 

tempted to trumpet the conclusion that adaptive control lowers heating costs, but 
before doing so, one must be clear that the cost being lowered is a combination of 
comfort and energy costs. If one is merely interested .in lowering energy costs, then 
simply shut off the furnace. A central contribution of this work is thus the framing 
of the task of air temperature regulation as an optimal control problem in which 
both comfort and energy costs are considered as part of the control objective. 

A common reaction to this research project is, "My life is far too irregular to be 
predicted. I don 't return home from work at the same time every day." An impor­
tant finding of this work is that even a highly nondeterministic schedule contains 
sufficient statistical regularity to be exploited by a predictive controller. We found 
this for both artificial data with a high variability index and real occupancy data. 

A final contribution of our work is to show that for periodic data such as occupancy 
patterns that follow a weekly schedule, the combination of a look up table to encode 
the periodic structure and a neural network to encode the residual structure can 
outperform either method in isolation. 
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