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Abstract 

Local disparity information is often sparse and noisy, which creates 
two conflicting demands when estimating disparity in an image re­
gion: the need to spatially average to get an accurate estimate, and 
the problem of not averaging over discontinuities. We have devel­
oped a network model of disparity estimation based on disparity­
selective neurons, such as those found in the early stages of process­
ing in visual cortex. The model can accurately estimate multiple 
disparities in a region, which may be caused by transparency or oc­
clusion, in real images and random-dot stereograms. The use of a 
selection mechanism to selectively integrate reliable local disparity 
estimates results in superior performance compared to standard 
back-propagation and cross-correlation approaches. In addition, 
the representations learned with this selection mechanism are con­
sistent with recent neurophysiological results of von der Heydt, 
Zhou, Friedman, and Poggio [8] for cells in cortical visual area V2. 
Combining multi-scale biologically-plausible image processing with 
the power of the mixture-of-experts learning algorithm represents 
a promising approach that yields both high performance and new 
insights into visual system function. 
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1 INTRODUCTION 

In many stereo algorithms, the local correlation between images from the two eyes 
is used to estimate relative depth (Jain, Kasturi, & Schunk [5]). Local correlation 
measures, however, convey no information about the reliability of a particular dis­
parity measurement. In the model presented here, we introduce a separate selection 
mechanism to determine which locations of the visual input have consistent dispar­
ity information. The focus was on several challenging viewing situations in which 
disparity estimation is not straightforward. For example, can the model estimate 
the disparity of more than one object in a scene? Does occlusion lead to poorer 
disparity estimation? Can the model determine the disparities of two transparent 
surfaces? Does the model estimate accurately the disparities present in real world 
images? Datasets corresponding to these different conditions were generated and 
used to test the model. 

Our goal is to develop a neurobiologically plausible model of stereopsis that ac­
curately estimates disparity. Compared to traditional cross-correlation approaches 
that try to compute a depth map for all locations in space, the mixture-of-experts 
model used here searches for sparse, reliable patterns or configurations of disparity 
stimuli that provide evidence for objects at different depths. This allows partial 
segmentation of the image to obtain a more compact representation of disparities. 
Local disparity estimates are sufficient in this case, as long as we selectively segment 
those regions of the image with reliable disparity information. 

The rest of the paper is organized as follows. First, we describe the architecture of 
the mixture-of-experts model. Second, we provide a brief qualitative description of 
the model's performance followed by quantitative results on a variety of datasets. 
In the third section, we compare the activity of units in the model to recent neuro­
physiological data. Finally, we discuss these findings, and consider remaining open 
questions. 

2 MIXTURE-OF-EXPERTS MODEL 

The model of stereopsis that we have explored is based on the filter model for motion 
detection devised by Nowlan and Sejnowski [6]. The motion problem was readily 
adapted to stereopsis by changing the time domain of motion to the left/right 
image domain for stereopsis. Our model (Figure 1) consisted of several stages 
and computed its output using only feed-forward processing, as described below 
(see also Gray, Pouget, Zemel, Nowlan, and Sejnowski [2] for more detail). The 
output of the first stage (disparity energy filters) became the input to two different 
primary pathways: (1) the local disparity networks, and (2) the selection networks. 
The activation of each of the four disparity-tuned output units in the model was 
the product of the outputs of the two primary pathways (summed across space). 
An objective function based on the mixture-of-experts framework (Jacobs, Jordan, 
Nowlan, & Hinton [4]) was used to optimize the weights from the disparity energy 
units to the local disparity networks and to the selection networks. The weights to 
the output units from the local disparity and selection pathways were fixed at 1.0. 
Once the model was trained, we obtained a scalar disparity estimate from the model 
by computing a nonlinear least squares Gaussian fit to the four output values. The 
mean of the Gaussian was our disparity estimate. When two objects were present 
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Figure 1: The mixture-of-experts architecture. 

in the input, we fit the sum of two Gaussians to the four output values. 

2.1 DISPARITY ENERGY FILTERS 

The retinal layer in the model consisted of one-dimensional right eye and left eye 
images, each 82 pixels in length. These images were the input to disparity energy 
filters, as developed by Ohzawa, DeAngelis, and Freeman [7]. At the energy filter 
layer, there were 51 receptive field (RF) locations which received input from partially 
overlapping regions of the retinae. At each of these RF locations, there were 30 
energy units corresponding to 10 phase differences at 3 spatial frequencies. These 
phase differences were proportional to disparity. An energy unit consisted of 4 
energy filter pairs, each of which was a Gabor filter. The outputs of the disparity 
energy units were normalized at each RF location and within each spatial frequency 
using a soft-max nonlinearity. 

2.2 LOCAL DISPARITY NETWORKS 

In the local disparity pathway, there were 8 RF locations, and each received a 
weighted input from 9 disparity energy locations. Each RF location corresponded 
to a local disparity network and contained a pool of 4 disparity-tuned units. Neigh­
boring locations received input from overlapping sets of disparity energy units. 
Weights were shared across all RF locations for each disparity. Soft-max compe­
tition occurred within each local disparity network (across disparity), and insured 
that only one disparity was strongly activated at each RF location. 

2.3 SELECTION NETWORKS 

Like the local disparity networks, the selection networks were organized into a grid 
of 8 RF locations with a pool of 4 disparity-tuned units at each location. These 4 
units represented the local support for each of the different disparity hypotheses. It 
is more useful to think of the selection networks, however, as 4 separate layers each 
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of which responded to a specific disparity across all regions of the image. Like the 
local disparity pathway, neighboring RF locations received input from overlapping 
disparity energy units, and weights were shared across space for each disparity. 
In addition, the outputs of the selection network were normalized with the soft­
max operation. This competition, however, occurred separately for each of the 4 
disparities in a global fashion across space. 

3 RESULTS 

Figure 2 shows the pattern of activations in the model when presented with a single 
object at a disparity of 2.1 pixels. The visual layout of the model in this figure 
is identical to the layout in Figure 1. The stimulus appears at bottom, with the 
3 disparity energy filter banks directly above it. On the left above the disparity 
energy filters are the local disparity networks. The selection networks are on the 
right. The summed output (across space) appears in the upper right corner of the 
figure. Note that the selection network for a 2 pixel disparity (2nd row from the 
bottom in the selection pathway) is active for the spatial location at far left. The 
corresponding location is also highly active in the local disparity pathway, and this 
combination leads to strong activation for a 2 pixel disparity in the output of the 
model. 

The mixture-of-experts model was optimized individually on a variety of different 
datasets and then tested on novel stimuli from the same datasets. The model's 
ability to discriminate among different disparities was quantified as the disparity 
threshold - the disparity difference at which one can correctly see a difference in 
depth 75% of the time. Disparity thresholds for the test stimuli were computed us­
ing signal-detection theory (Green & Swets [3]). Sample stimuli and their disparity 
thresholds are shown in Table 1. The model performed best on single object stimuli 
(top row). This disparity threshold (0.23 pixels) was substantially less than the 
input resolution of the model (1 pixel) and was thus exhibiting stereo hyperacuity. 
The model also performed well when there were multiple, occluding objects (2nd 
row). When both the stimulus and the background were generated from a uni­
form random distribution, the disparity threshold rose to 0.55 pixels. The model 
estimated disparity accurately in random-dot stereograms and real world images. 
Binary stereograms containing two transparent surfaces, however, were a challeng­
ing stimulus, and the threshold rose to 0.83 pixels. Part of the difficulty with this 
stimulus (containing two objects) was fitting the sum of 2 Gaussians to 4 data 
points. 

We have compared our mixture-of-experts model (containing both a selection path­
way and a local disparity pathway) with standard backpropagation and cross­
correlation techniques (Gray et al [2]). The primary difference is that the back­
propagation and cross-correlation models have no separate selection mechanism. In 
essence, one mechanism must compute both the segmentation and the disparity 
estimation. In our tests with the back-propagation model, we found that disparity 
thresholds for single object stimuli had risen by a factor of 3 (to 0.74 pixels) com­
pared to the mixture-of-experts model. Disparity estimation of the cross-correlation 
model was similarly poor. Thresholds rose by a factor of2 (compared to the mixture­
of-experts model) for both single object stimuli and the noise stimuli (threshold = 
0.46, 1.28 pixels, respectively). 
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Figure 2: The activity in the mixture-of-experts model in response to an input 
stimulus containing a single object at a disparity of 2.10 pixels. At bottom is the 
input stimulus. The 3 regions in the middle represent the output of the disparity 
energy filters. Above the disparity energy output are the two pathways of the model. 
The local disparity networks appear to the left and the selection networks are to 
the right. Both the local disparity networks and the selection networks receive 
topographically organized input from the disparity energy filters. The selection and 
local disparity networks are displayed so that the top row represents a disparity 
of 0 pixels, the next row a 1 pixel disparity, then 2 and 3 pixel disparities in the 
remaining rows. At the top left part of the figure is the desired output for the given 
input stimulus. In the top middle is the output for each local region of space. On 
the top right is the actual output of the model collapsed across space. The numbers 
at the bottom left of each part of the network indicate the maximum and minimum 
activation values within that part. White indicates maximum activation level, black 
is minimum. 
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Stimulus Type 
Single 
Double 
Noise 

Random-Dot 
Transparent 

Real 

Sample Stimulus 
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Threshold 
0.23 
0.41 
0.55 
0.36 
0.83 
0.30 

Table 1: Sample stimuli for each of the datasets, and corresponding disparity thresh­
olds (in pixels) for the mixture-of-experts model. 

4 COMPARISON WITH NEUROPHYSIOLOGICAL 
DATA 

To gain insight into the response properties of the selection units in our model, 
we mapped their activations as a function of space and disparity. Specifically, we 

Selection 1 measured the activation of a unit as a single 
high-contrast edge was moved across the spa­
tial extent of the receptive field. At each spa­
tial location, we tested all possible disparities. 
An example of this mapping is shown in Figure 
3. This selection unit is sensitive to changes 
in disparity as we move across space. We refer 
to this property as disparity contrast. In other 
words, the selection unit learned that a reliable 
indicator for a given disparity is a change in 

o 0.2 0.4 0.6 0.8 i disparity across space. This type of detector 
Figure 3: Selection unit activity can be behaviorally significant, because dispar­

ity contrast may playa role in signaling object boundaries. These selection units 
could thus provide valuable information in the construction of a 3-D model of the 
world. Recent neurophysiological studies by von der Heydt, Zhou, Friedman, and 
Poggio [8] is consistent with this interpretation. They found that neurons of awake, 
behaving monkeys in area V2 responded to edges of 4° by 4° random-dot stere­
ograms. Because random-dot stereograms have no monocular form cues, these 
neurons must be responding to edges in depth. This sensitivity to edges in a depth 
map corresponds directly to the response profile of the selection units. 

5 DISCUSSION 

A major difficulty in estimating the disparities of objects in a visual scene in re­
alistic circumstances (i.e., with clutter, transparency, occlusion, noise) is knowing 
which cues are most reliable and should be integrated, and which regions have am­
biguous or unreliable information. Nowlan and Sejnowski [6] found that selection 
units learned to respond strongly to image regions that contained motion energy 
in several different directions. The role of those selection units is similar to layered 
analysis techniques for computing support maps in the motion domain (Darrell & 
Pentland [1]). The operation of the dual pathways in our model bears some similar-
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ities to the pathways developed in the motion model of Nowlan and Sejnowski [6]. 
In the stereo domain, we have found that our selection units develop into edge 
detectors on a disparity map. They thus responded to regions rich in disparity in­
formation, analogous to the salient motion information captured in the motion [6] 
selection units. 

We have also found that the model matches psychophysical data recorded by Wes­
theimer and McKee [9] on the effects of spatial frequency filtering on disparity 
thresholds (Gray et al [2]). They found, in human psychophysical experiments, 
that disparity thresholds increased for any kind of spatial frequency filtering of line 
targets. In particular, disparity sensitivity was more adversely affected by high-pass 
filtering than by low-pass filtering. 

In summary, we propose that the functional division into local response and selection 
represents a general principle for image interpretation and analysis that may be 
applicable to many different visual cues, and also to other sensory domains. In our 
approach to this problem, we utilized a multi-scale neurophysiologically-realistic 
implementation of binocular cells for the input, and then combined it with a neural 
network model to learn reliable cues for disparity estimation. 
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