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ABSTRACT 

The separation of generalization error into two types, bias and variance 
(Geman, Bienenstock, Doursat, 1992), leads to the notion of error 
reduction by averaging over a "committee" of classifiers (Perrone, 
1993). Committee perfonnance decreases with both the average error of 
the constituent classifiers and increases with the degree to which the 
misclassifications are correlated across the committee. Here, a method 
for reducing correlations is introduced, that uses a winner-take-all 
procedure similar to competitive learning to drive the individual 
networks to different minima in weight space with respect to the 
training set, such that correlations in generalization perfonnance will be 
reduced, thereby reducing committee error. 

1 INTRODUCTION 

The problem of constructing a predictor can generally be viewed as finding the right 
combination of bias and variance (Geman, Bienenstock, Doursat, 1992) to reduce the 
expected error. Since a neural network predictor inherently has an excessive number of 
parameters, reducing the prediction error is usually done by reducing variance. Methods 
for reducing neural network complexity can be viewed as a regularization technique to 
reduce this variance. Examples of such methods are Optimal Brain Damage (Le Cun et. 
al., 1991), weight decay (Chauvin, 1989), and early stopping (Morgan & Boulard, 1990). 

The idea of combining several predictors to fonn a single, better predictor (Bates & 
Granger, 1969) has been applied using neural networks in recent years (Wolpert, 1992; 
Perrone, 1993; Hashem, 1994). 
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2 REDUCING MISCLASSIFICATION CORRELATION 

Since committee errors occur when too many individual predictors are in error, committee 
performance improves as the correlation of network misclassifications decreases. Error 
correlations can be handled by using a weighted sum to generate a committee prediction; 
the weights can be estimated by using ordinary least squares (OLS) estimators (Hashem, 
1994) or by using Lagrange multipliers (Perrone, 1993). 

Another approach (Parmanto et al., 1994) is to reduce error correlation directly by 
attempting to drive the networks to different minima in weight space, that will 
presumably have different generalization syndromes, or patterns of error with respect to a 
test set (or better yet, the entire stimulus space). 

2.1 Data Manipulations 

Training the networks using nonidentical data has been shown to improve committee 
performance, both when the data sets are from mutually exclusive continuous regions (eg, 
Jacobs et al.,1991), or when the training subsets are arbitrarily chosen (Breiman, 1992; 
Parmanto, Munro, and Doyle, 1995). Networks tend to converge to different weight 
states, because the error surface itself depends on the training set; hence changing the data 
changes the error surface. 

2.2 Auxiliary tasks 

Another way to influence the networks to disagree is to introduce a second output unit 
with a different task to each network in the committee. Thus, each network has two 
outputs, a primary unit which is trained to predict the class of the input, and a secondary 
unit, with some other task that is different than the tasks assigned to the secondary units 
of the other committee members. The success of this approach rests on the assumption 
that the decorrelation of the network errors will more than compensate for any degradation 
of performance induced on the primary task by the auxiliary task. The presence of a 
hidden layer in each network guarantees that the two output response functions share 
some weight parameters (i.e., the input-hidden weights), and so the learning of the 
secondary task influences the function learned by the primary output unit. 

Parmanto et al. (1994) acheived significant decorrelation and improved performance on a 
varoety of tasks using one of the input variables as the training signal for the secondary 
unit. Interestingly, the secondary task does not necessarily degrade performance on the 
primary task. Our studies, as well as those of Caruana (1995), show that extra tasks can 
facilitate learning time and generalization performance on an individual network. On the 
other hand, certain auxiliary tasks interfere with the primary task. We have found 
however, that even when the individual performance is degraded, committee performance 
is nevertheless enahnced (relative to a committee of single output networks) due to the 
magnitude of error decorrelation. 

3 THE COMPETITIVE COMMITTEE 

An alternative to using a stationary task per se, such as replicating an input variable or 
projecting onto principal components (as was done in Parmanto et ai, 1994), is to use a 
signal that depends on the other networks, in such a manner that the functions computed 
by the secondary units are negatively correlated after training. This notion is reminiscent 
of competitive learning (Rumelhart and Zipser, 1986); that is, the functions computed by 
the secondary units will partition the stimulus space. 

Thus, a Competitive Committee Machine (CCM) is defined as a committee of neural 
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network classifiers, each with two output units: a primary unit trained according to the 
classification task, and a secondary unit participating in a competitive process with 
secondary units of the other networks in the committee; let the outputs of network i be 
denoted Pi and Si, respectively (see Figure 1). The network weights are modified 
according to the following variant of the back propagation procedure. 

When data item a from the training set is presented to the committee during training, 
with input vector XCl and known output classification value yCl (binary), the networks 
each process XCl simultaneously, and the P and S output units of each network respond. 
Each P-unit receives the identical training signal, yCl, that corresponds to the input item; 
the training signal to the S-units is zero for all networks except the network with the 
greatest S-unit response among the committee; the maximum Si among the networks in 
the committee receives a training signal of 1, and the others receive a training signal of O. 

where or mof are the errors attributed to the primary and secondary units respectively 
to adjust network weights with back propagationl . During the course of training, the S­
unit's response is explicitly trained to become sensitive to a unique region (relative to the 
other networks' S-units) of the stimulus space. This training signal is different from 
typical "tasks" that are used to train neural networks in that it is not a static function of 
the input; instead, since it depends on the other networks in the committee, it has a 
dynamic qUality. 

4 RESULTS 

Some experiments have been run using the sine wave classification task (Figure 2) of 
Geman and Bienenstock (1992). 

Comparisons of CCM perfonnance versus the baseline perfonnance of a committee with 
a simple average over a range of architectures (as indicated by the number of hidden units) 
are favorable (Figure 3). Also, note that the improvement is primarily attributable to 
descreased correlation, since the average individual perfonnance is not significantly 
affected. 

Visualization of the response of the individual networks to the entire stimulus space 
gives a complete picture of how the networks generalize and shows the effect of the 
competition (Figure 4). For this particular data set, the classes are easily separated in the 
central region (note that all the networks do well here). But at the edges, there is much 
more variance in the networks trained with competitive secondary units (Figure 5). 

5 DISCUSSION 

Caruana (1995) has demontrated significant improvement on "target" classification tasks 
in individual networks by adding one or more supplementary output units trained to 
compute tasks related to the target task. The additional output unit added to each network 

IFor notational convenience, the derivative factor sometimes included in the definition of 

8 is not included in this description of oP and oS. 
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Figure 1: A Competitive Committee Machine. Each of the K networks receives the 
srune input and produces two outputs, P and S. The P responses of all the networks are 
compared to a common training signal to compute an error value for backpropagation 
(dark dashed arrows); the P responses are combined (by vote or by sum) to determine the 
committee response. The S-unit responses are compared with each other, with the 
"winner" (highest response) receiving a training signal of 1, and the others receiving a 
training signal of O. Thus the training signal for network i is computed by comparing all 
S-unit responses, and then fed back to the S-units, hence the two-way arrows (gray). 

in the CCM merges a variant of Rumelhart and Zipser's (1986) competitive learning 
procedure with backpropagation, to form a novel hybrid of a supervised training technique 
with an unsupervised method. The training signal delivered to the secondary unit under 
CCM is more direct than an arbitrary task, in that it is defined explicitly in terms of 
dissociating response properties. 

Note that the training signals for the S-units differ from the P-unit training signals in 
two important respects: 
1. Not static: The signal depends on the S-unit responses/rom the other networks ,md 

hence chcmges during the course of training. 
2. Not uniform: It is not constant across the committee (whereas the P-unit training 

signal is.) 
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Fi!.!ure 2. A ("/assif/ca[ion task . Training data (bottom) is srunpled from a classitication 
ta;k defined hy a s'inusoid (top) conupted hy noise (middle). 
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Figure 3. Peliormallce of CCM. Committees of 5 networks were trained with comp­
etitive learning (CCM) and without (baseline). Each data point is an average over 5 
simulations with different initial weights. 



Competition Among Networks Improves Committee Performance 597 

Network.l (Error: 10.20%) Network '2 (Err",: 15.59"1.) 
r-==== 

Network .3 (Error: 15.250/.) Nelwork ,4 (Error: 15.54"/.) 

Network #5 (Error: 12.65%) Canmillee OUtput • Thtesholded (Error: 11.64) 

Figure 4. Generalization plots for a committee. The level of gray indicates the response 
for each network of a committee trained without competition. The panel on the lower 
right shows the (thresholded) committee output. The average pairwise correlation of the 
committee is 0.91. 

Network #1 (Error: 10.21%) Network,2 (Error: 9.83%) 

Network #3 (Error . 1683%) Nelwork'4 (Error: 14.88%) 

Figure 5. Gelleralization plots for a CCM committee. Comparison with Figure 4 shows 
much more variance among the committee at the edges. Note that the committee 
performs much better near the right and left ends of the stimulus space than does any 
individual network. This committee had an error rate of 8.11 % (cf 11.64% in the 
baseline case). 
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The weighting of oS relative to oP is an important consideration; in the simulations 
above, the signal from the secondary unit was arbitrarily multiplied by a factor of 0.1. 
While we have not yet examined this systematically, it is assumed that this factor will 
modulate the tradeoff between degradation of the primary task and reduction of error 
correlation. 
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