
Blind separation of delayed and convolved 
sources. 

Te-Won Lee 
Max-Planck-Society, GERMANY, 
AND Interactive Systems Group 

Carnegie Mellon University 
Pittsburgh, PA 15213, USA 

tewonOes. emu. edu 

Anthony J. Bell 
Computational Neurobiology, 

The Salk Institute 
10010 N. Torrey Pines Road 

La Jolla, California 92037, USA 
tonyOsalk.edu 

Russell H. Lambert 
Dept of Electrical Engineering 

University of South California, USA 
rlambertOsipi.use.edu 

Abstract 

We address the difficult problem of separating multiple speakers 
with multiple microphones in a real room. We combine the work 
of Torkkola and Amari, Cichocki and Yang, to give Natural Gra­
dient information maximisation rules for recurrent (IIR) networks, 
blindly adjusting delays, separating and deconvolving mixed sig­
nals. While they work well on simulated data, these rules fail 
in real rooms which usually involve non-minimum phase transfer 
functions, not-invertible using stable IIR filters. An approach that 
sidesteps this problem is to perform infomax on a feedforward archi­
tecture in the frequency domain (Lambert 1996). We demonstrate 
real-room separation of two natural signals using this approach. 

1 The problem. 

In the linear blind signal processing problem ([3, 2] and references therein), N 
signals, s(t) = [S1(t) ... SN(t)V, are transmitted through a medium so that an 
array of N sensors picks up a set of signals x(t) = [Xl (t) ... XN(t)V, each of which 
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has been mixed, delayed and filtered as follows: 

N M-l 

Xi(t) = L L aijkSj(t - Dii - k) (1) 
j=l k=O 

(Here Dij are entries in a matrix of delays and there is an M-point filter, aij, 
between the the jth source and the ith sensor.) The problem is to invert this 
mixing without knowledge of it, thus recovering the original signals, s(t). 

2 Architectures. 

The obvious architecture for inverting eq.1 is the feed forward one: 

N M-l 

Ui(t) = L L WijkXj(t - dij - k). (2) 
j=l k=O 

which has filters, Wij, and delays, dij, which supposedly reproduce, at the Ui , the 
original uncorrupted source Signals, Si. This was the architecture implicitly assumed 
in [2]. However, it cannot solve the delay-compensation problem, since in eq.1 each 
delay, D ij , delays a single source, while in eq.2 each delay, d ii is associated with a 
mixture, Xj. 

Torkkola [8], has addressed the problem of solving the delay-compensation prob­
lem with a feedback architecture. Such an architecture can, in principle, solve this 
problem, as shown earlier by Platt & Faggin [7]. Torkkola [9] also generalised the 
feedback architecture to remove dependencies across time, to achieve the deconvo­
lution of mixtures which have been filtered, as in eq.1. 

Here we propose a slightly different architecture than Torkkola's ([9], eq.15). His 
architecture could fail since it is missing feedback cross-weights for t = 0, ie: WijO. 
A full feedback system looks like: 

N M-l 

Ui (t) = Xi - L L WijkUj(t - dij - k). (3) 
j=l k=O 

and is illustrated in Fig.I. Because terms in Ui(t) appear on both sides, we rewrite 
this in vector terms: u(t) = x(t) - Wou(t) - E~~l Wku(t - k), in order to solve 
it as follows: 

M-l 

u(t) = (I + WO)-l(X(t) - L WkU(t - k» (4) 
k=l 

In these equations, there is a feedback unmixing matrix, W k, for each time point 
of the filter, but the 'leading matrix', Wo has a special status in solving for u(t). 
The delay terms are useful since one metre of distance in air at an 8kHz sampling 
rate, corresponds to a whole 25 zero-taps of a filter. Reintroducing them gives us: 

N M-l 

u(t) = (I + WO)-l(X(t) - net(t», neti(t) = L L WijkU(t - dij - k» (5) 
j=l k=l 
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Figure 1: The feedback neural architecture of eq.9, which is used to separate and 
deconvolve signals. Each box represents a causal filter and each circle denotes a 
time delay. 

3 Algorithms. 

Learning in this architecture is performed by maximising the joint entropy, H(y(t)), 
of the random vector y(t) = g(u(t)), where 9 is a bounded monotonic nonlinear 
function (a sigmoid function). The success of this for separating sources depends 
on four assumptions: (1) that the sources are statistically independent, (2) that 
each source is white, ie: there are no dependencies between time points, (3) that 
the non-linearity, g, has a derivative which has higher kurtosis than the probability 
density functions (pdf's) of the sources, and (4) that a stable IIR (feedback) inverse 
of the mixing exists; ie: that a is minimum phase (see section 5). 

Assumption (1) is reasonable and Assumption (3) allows some tailoring of our algo­
rithm to fit data of different types. Assumption (2), on the other hand, is not true 
for natural signals. Our algorithm will whiten: it will remove dependencies across 
time which already existed in the original source signals, Si. However, it is possible 
to restore the characteristic autocorrelations (amplitude spectra) of the sources by 
post-processing. For the reasoning behind Assumption (3) see [2]. We will discuss 
Assumption 4 in section 5. 

In the static feedback case of eq.5, when M = 1, the learning rule for the feedback 
weights W 0 is just a co-ordinate transform of the rule for feedforward weights, W 0, 

in the equivalent architecture of u(t) = Wox(t). Since Wo = (I + WO)-l, we 
have Wo = WOI - I, which, due to the quotient rule for matrix differentiation, 
differentiates as: 

(6) 

The best way to maximise entropy in the feedforward system is not to follow the 
entropy gradient, as in [2J , but to follow its 'natural' gradient, as reported by Amari 
et al [1]: 

(7) 

This is an optimal rescaling of the entropy gradient [1, 3]. It simplifies the learning 
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rule and speeds convergence considerably. Evaluated, it gives [2]: 

A T A 

AWO ex: (I + yu )WO, (8) 

Substituting into eq.7 gives the natural gradient rule for static feedback weights: 

(9) 

This reasoning may be extended to networks involving filters. For the feedforward 
filter architecture u(t) = ~:!:~1 W kX(t - k), we derive a natural gradient rule (for 
k> 0) of: 

A T A 

A W k ex: YUt-k W k (10) 

where, for convenience, time has become subscripted. Performing the same coordi­
nate transforms as for Wo above, gives the rule: 

(11) 

(We note that learning rules similar to these have been independently derived by 
Cichocki et al [4]). Finally, for the delays in eq.5, we derive [2, 8]: 

aH( ) M-l a 
Ad·· ex: Y = _yA. ~ -W" kU(t - d .. - k) 

13 ad. . 1 L at 13 13 
13 k=l 

(12) 

This rule is different from that in [8] because it uses the collected temporal gradient 
information from all the taps. The algorithms of eq.9, eq.11 and eq.12 are the ones 
we use in our experiments on the architecture of eq.5. 

4 Simulation results for the feedback architecture 

To test the learning rules in eq.9, eq.ll and eq.12 we used an IIR filter system to 
recover two sources which had been mixed and delayed as follows (in Z-transform 
notation): 

An (z) = 0.9 + 0.5z-1 + 0.3z-2 
A21 (z) = -0.7z-5 - 0.3z-6 - 0.2z-7 

A12 (Z) = 0.5z- 5 + 0.3z-6 + 0.2z-7 

A22 (Z) = 0.8 - 0.lz-1 

(13) 

The mixing system, A(z), is a minimum-phase system with all its zeros inside the 
unit circle. Hence, A(z) can be inverted using a stable causal IIR system since all 
poles of the inverting systems are also inside the unit circle. For this experiment, we 
chose an artificially-generated source: a white process with a Laplacian distribution 
[/z(x) = exp( -Ix!)]. In the frequency domain the deconvolving system looks as 
follows: 

(14) 

where D(z) = Wll (Z)W22 (Z) - W12 (Z)W21 (Z)). This leads to the following solution 
for the weight filters: 

Wll (z) = A 22 (Z) W22 (Z) = All (z) 
W21 (z) = -A21 (z) W12 (Z) = -A12 (Z) (15) 
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The learning rule we used was that of eq.9 and eq.ll with the logistic non-linearity, 
Yi = 1/ exp( -Ui). Fig.2A shows the four filters learnt by our IIR algorithm. The 
bottom row shows the inverting system convolved with the mixing system, proving 
that W * A is approximately the identity mapping. Delay learning is not demon­
strated here, though for periodic signals like speech we observed that it is subject 
to local minima problems [8, 9]. 

(A) Feedback (IIR) learning (8) Feedforward (FIR) learning 

Figure 2: Top two rows: learned unmixing filters for (A) IIR learning on minimum­
phase mixing, and (B) FIR freq.-domain learning on non-minimum phase mixing. 
Bottom row: the convolved mixing and unmixing systems. The delta-like response 
indicates successful blind unmixing. In (B) this occurs acausally with a time-shift. 

5 Back to the feedforward architecture. 

The feedback architecture is elegant but limited. It can only invert minimum­
phase mixing (all zeros are inside the unit circle meaning that all poles of the 
inverting system are as well). Unfortunately, real room acoustics usually involves 
non-minimum phase mixing. 

There does exist, however, a stable non-causal feedforward (FIR) inverse for non­
minimum phase mixing systems. The learning rules for such a system can be formu­
lated using the FIR polynomial matrix algebra as described by Lambert [5]. This 
may be performed in the time or frequency domain, the only requirements being 
that the inverting filters are long enough and their main energy occurs more-or­
less in their centre. This allows for the non-causal expansion of the non-minimum 
phase roots, causing the roughly symmetrical "flanged" appearance of the filters in 
Fig-.2B. 

For convenience, we formulate the infomax and natural gradient info max rules [2, 1] 
in the frequency domain: 

~ W ex W-H + fft(y)XH 

~ W ex (I + fft(y)UH)W 

(16) 

(17) 

where the H superscript denotes the Hermitian transpose (complex conjugate). In 
these rules, as in eq.14, W is a matrix of filters and U and X are blocks of multi-
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sensor signal in the frequency domain. Note that the nonlinearity 1li = 8~i ~ still 
operates in the time domain and the fft is applied at the output. 

6 Simulation results for the feedforward architecture 

To show the learning rule in eq.17 working, we altered the transfer function in eq.13 
as follows: 

(18) 

This system is now non-minimum phase, having zeros outside the unit circle. The 
inverse system can be approximated by stable non-causal FIR filters. These were 
learnt using the learning rule of eq.17 (again, with the logistic non-linearity). The 
resulting learnt filters are shown in Fig.2B where the leading weights were chosen 
to be at half the filter size (M/2). Non-causality of the filters can be clearly ob­
served for W12 and W21, where there are non-zero coefficients before the maximum 
amplitude weights. The bottom row of Fig.2B shows the successful separation by 
plotting the complete unmixing/mixing transfer function: W * A. 

7 Experiments with real recordings 

To demonstrate separation in a real room, we set up two microphones and recorded 
firstly two people speaking and then one person speaking with music in the back­
ground. The microphones and the sources were both 60cm apart and 60cm from 
each other (arranged in a square), and the sampling was 16kHz. Fig.3A shows 
the two recordings of a person saying the digits "one" to "ten" while loud music 
plays in the background. The IIR system of eq.5, eq.9 and eq.ll was unable to 
separate these signals, presumably due to the non-mini mum-phase nature of the 
room transfer functions. However, the algorithm of eq.17, converged after 30 passes 
through the 10 second recordings. The filter lengths were 256 (corresponding to 
16ms). The separated signals are shown in Fig.3B. Listening to them conveys a 
sense of almost-clean separation, though interference is audible. The results on the 
two people speaking were similar. 

An important application is in spontaneous speech recognition tasks where the best 
recognizer may fail completely in the presence of background music or competing 
speakers (as in the teleconferencing problem). To test this application, we fed into a 
speech recognizer, ten sentences recorded with loud music in the background and ten 
sentences recorded with a simultaneous speaker interference. After separation, the 
recognition rate increased considerably for both cases. These results are reported 
in detail in [6]. 

8 Conclusions 

Starting with 'Natural gradient infomax' IIR learning rules for blind time delay 
adjustment, separation and deconvolution, we showed how these worked well on 
minimum-phase mixing, but not on non-minimum-phase mixing, as usually occurs 
in rooms. This led us to an FIR frequency domain infomax approach suggested 
by Lambert [5]. The latter approach shows much better separation of speech and 
music mixed in a real-room. Based on these techniques, it should now be possible 
to develop real-world applications. 
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(A) Mixtures (8) Separations 
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Figure 3: Real-room separation/deconvolution. (A) recorded mixtures (B) sepa­
rated speech (spoken digits 1-10) and music. 
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